scispace - formally typeset
Search or ask a question
Topic

Image quality

About: Image quality is a research topic. Over the lifetime, 52716 publications have been published within this topic receiving 787955 citations. The topic is also known as: picture quality.


Papers
More filters
Journal ArticleDOI
TL;DR: Despite its simplicity, it is able to show that BRISQUE is statistically better than the full-reference peak signal-to-noise ratio and the structural similarity index, and is highly competitive with respect to all present-day distortion-generic NR IQA algorithms.
Abstract: We propose a natural scene statistic-based distortion-generic blind/no-reference (NR) image quality assessment (IQA) model that operates in the spatial domain. The new model, dubbed blind/referenceless image spatial quality evaluator (BRISQUE) does not compute distortion-specific features, such as ringing, blur, or blocking, but instead uses scene statistics of locally normalized luminance coefficients to quantify possible losses of “naturalness” in the image due to the presence of distortions, thereby leading to a holistic measure of quality. The underlying features used derive from the empirical distribution of locally normalized luminances and products of locally normalized luminances under a spatial natural scene statistic model. No transformation to another coordinate frame (DCT, wavelet, etc.) is required, distinguishing it from prior NR IQA approaches. Despite its simplicity, we are able to show that BRISQUE is statistically better than the full-reference peak signal-to-noise ratio and the structural similarity index, and is highly competitive with respect to all present-day distortion-generic NR IQA algorithms. BRISQUE has very low computational complexity, making it well suited for real time applications. BRISQUE features may be used for distortion-identification as well. To illustrate a new practical application of BRISQUE, we describe how a nonblind image denoising algorithm can be augmented with BRISQUE in order to perform blind image denoising. Results show that BRISQUE augmentation leads to performance improvements over state-of-the-art methods. A software release of BRISQUE is available online: http://live.ece.utexas.edu/research/quality/BRISQUE_release.zip for public use and evaluation.

3,780 citations

Journal ArticleDOI
TL;DR: This work has recently derived a blind IQA model that only makes use of measurable deviations from statistical regularities observed in natural images, without training on human-rated distorted images, and, indeed, without any exposure to distorted images.
Abstract: An important aim of research on the blind image quality assessment (IQA) problem is to devise perceptual models that can predict the quality of distorted images with as little prior knowledge of the images or their distortions as possible. Current state-of-the-art “general purpose” no reference (NR) IQA algorithms require knowledge about anticipated distortions in the form of training examples and corresponding human opinion scores. However we have recently derived a blind IQA model that only makes use of measurable deviations from statistical regularities observed in natural images, without training on human-rated distorted images, and, indeed without any exposure to distorted images. Thus, it is “completely blind.” The new IQA model, which we call the Natural Image Quality Evaluator (NIQE) is based on the construction of a “quality aware” collection of statistical features based on a simple and successful space domain natural scene statistic (NSS) model. These features are derived from a corpus of natural, undistorted images. Experimental results show that the new index delivers performance comparable to top performing NR IQA models that require training on large databases of human opinions of distorted images. A software release is available at http://live.ece.utexas.edu/research/quality/niqe_release.zip.

3,722 citations

Journal ArticleDOI
TL;DR: An image information measure is proposed that quantifies the information that is present in the reference image and how much of this reference information can be extracted from the distorted image and combined these two quantities form a visual information fidelity measure for image QA.
Abstract: Measurement of visual quality is of fundamental importance to numerous image and video processing applications. The goal of quality assessment (QA) research is to design algorithms that can automatically assess the quality of images or videos in a perceptually consistent manner. Image QA algorithms generally interpret image quality as fidelity or similarity with a "reference" or "perfect" image in some perceptual space. Such "full-reference" QA methods attempt to achieve consistency in quality prediction by modeling salient physiological and psychovisual features of the human visual system (HVS), or by signal fidelity measures. In this paper, we approach the image QA problem as an information fidelity problem. Specifically, we propose to quantify the loss of image information to the distortion process and explore the relationship between image information and visual quality. QA systems are invariably involved with judging the visual quality of "natural" images and videos that are meant for "human consumption." Researchers have developed sophisticated models to capture the statistics of such natural signals. Using these models, we previously presented an information fidelity criterion for image QA that related image quality with the amount of information shared between a reference and a distorted image. In this paper, we propose an image information measure that quantifies the information that is present in the reference image and how much of this reference information can be extracted from the distorted image. Combining these two quantities, we propose a visual information fidelity measure for image QA. We validate the performance of our algorithm with an extensive subjective study involving 779 images and show that our method outperforms recent state-of-the-art image QA algorithms by a sizeable margin in our simulations. The code and the data from the subjective study are available at the LIVE website.

3,146 citations

01 Nov 1971
TL;DR: Parts of image processing are discussed--specifically: the mathematical operations one is likely to encounter, and ways of implementing them by optics and on digital computers; image description; and image quality evaluation.
Abstract: Image processing techniques find applications in many areas, chief among which are image enhancement, pattern recognition, and efficient picture coding. Some aspects of image processing are discussed--specifically: the mathematical operations one is likely to encounter, and ways of implementing them by optics and on digital computers; image description; and image quality evaluation. Many old results are reviewed, some new ones presented, and several open questions are posed.

2,961 citations

Journal ArticleDOI
TL;DR: This paper presents results of an extensive subjective quality assessment study in which a total of 779 distorted images were evaluated by about two dozen human subjects and is the largest subjective image quality study in the literature in terms of number of images, distortion types, and number of human judgments per image.
Abstract: Measurement of visual quality is of fundamental importance for numerous image and video processing applications, where the goal of quality assessment (QA) algorithms is to automatically assess the quality of images or videos in agreement with human quality judgments. Over the years, many researchers have taken different approaches to the problem and have contributed significant research in this area and claim to have made progress in their respective domains. It is important to evaluate the performance of these algorithms in a comparative setting and analyze the strengths and weaknesses of these methods. In this paper, we present results of an extensive subjective quality assessment study in which a total of 779 distorted images were evaluated by about two dozen human subjects. The "ground truth" image quality data obtained from about 25 000 individual human quality judgments is used to evaluate the performance of several prominent full-reference image quality assessment algorithms. To the best of our knowledge, apart from video quality studies conducted by the Video Quality Experts Group, the study presented in this paper is the largest subjective image quality study in the literature in terms of number of images, distortion types, and number of human judgments per image. Moreover, we have made the data from the study freely available to the research community . This would allow other researchers to easily report comparative results in the future

2,598 citations


Network Information
Related Topics (5)
Image processing
229.9K papers, 3.5M citations
91% related
Pixel
136.5K papers, 1.5M citations
88% related
Image segmentation
79.6K papers, 1.8M citations
86% related
Feature (computer vision)
128.2K papers, 1.7M citations
83% related
Convolutional neural network
74.7K papers, 2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,161
20222,551
20212,263
20202,687
20193,032
20182,832