scispace - formally typeset
Search or ask a question

Showing papers on "Image resolution published in 2014"


Posted Content
TL;DR: In this article, a recurrent neural network (RNN) model is proposed to extract information from an image or video by adaptively selecting a sequence of regions or locations and only processing the selected regions at high resolution.
Abstract: Applying convolutional neural networks to large images is computationally expensive because the amount of computation scales linearly with the number of image pixels. We present a novel recurrent neural network model that is capable of extracting information from an image or video by adaptively selecting a sequence of regions or locations and only processing the selected regions at high resolution. Like convolutional neural networks, the proposed model has a degree of translation invariance built-in, but the amount of computation it performs can be controlled independently of the input image size. While the model is non-differentiable, it can be trained using reinforcement learning methods to learn task-specific policies. We evaluate our model on several image classification tasks, where it significantly outperforms a convolutional neural network baseline on cluttered images, and on a dynamic visual control problem, where it learns to track a simple object without an explicit training signal for doing so.

2,107 citations


Proceedings Article
08 Dec 2014
TL;DR: A novel recurrent neural network model that is capable of extracting information from an image or video by adaptively selecting a sequence of regions or locations and only processing the selected regions at high resolution is presented.
Abstract: Applying convolutional neural networks to large images is computationally expensive because the amount of computation scales linearly with the number of image pixels. We present a novel recurrent neural network model that is capable of extracting information from an image or video by adaptively selecting a sequence of regions or locations and only processing the selected regions at high resolution. Like convolutional neural networks, the proposed model has a degree of translation invariance built-in, but the amount of computation it performs can be controlled independently of the input image size. While the model is non-differentiable, it can be trained using reinforcement learning methods to learn task-specific policies. We evaluate our model on several image classification tasks, where it significantly outperforms a convolutional neural network baseline on cluttered images, and on a dynamic visual control problem, where it learns to track a simple object without an explicit training signal for doing so.

1,649 citations


Journal ArticleDOI
TL;DR: Comprehensive evaluations on two remote sensing image databases and comparisons with some state-of-the-art approaches demonstrate the effectiveness and superiority of the developed framework.
Abstract: The rapid development of remote sensing technology has facilitated us the acquisition of remote sensing images with higher and higher spatial resolution, but how to automatically understand the image contents is still a big challenge. In this paper, we develop a practical and rotation-invariant framework for multi-class geospatial object detection and geographic image classification based on collection of part detectors (COPD). The COPD is composed of a set of representative and discriminative part detectors, where each part detector is a linear support vector machine (SVM) classifier used for the detection of objects or recurring spatial patterns within a certain range of orientation. Specifically, when performing multi-class geospatial object detection, we learn a set of seed-based part detectors where each part detector corresponds to a particular viewpoint of an object class, so the collection of them provides a solution for rotation-invariant detection of multi-class objects. When performing geographic image classification, we utilize a large number of pre-trained part detectors to discovery distinctive visual parts from images and use them as attributes to represent the images. Comprehensive evaluations on two remote sensing image databases and comparisons with some state-of-the-art approaches demonstrate the effectiveness and superiority of the developed framework.

580 citations


Journal ArticleDOI
TL;DR: The study conducted in two orchards highlighted that an inexpensive approach based on consumer-grade cameras on board a hand-launched unmanned aerial platform can provide accuracies comparable to those of the expensive and computationally more complex light detection and ranging (LIDAR) systems currently operated for agricultural and environmental applications.

448 citations


Journal ArticleDOI
TL;DR: A camera-global positioning system (GPS) module to allow the synchronization of camera exposure with the airframe's position as recorded by a GPS with 10-20-cm accuracy is developed.
Abstract: Micro-unmanned aerial vehicles often collect a large amount of images when mapping an area at an ultrahigh resolution. A direct georeferencing technique potentially eliminates the need for ground control points. In this paper, we developed a camera-global positioning system (GPS) module to allow the synchronization of camera exposure with the airframe's position as recorded by a GPS with 10-20-cm accuracy. Lever arm corrections were applied to the camera positions to account for the positional difference between the GPS antenna and the camera center. Image selection algorithms were implemented to eliminate blurry images and images with excessive overlap. This study compared three different software methods (Photoscan, Pix4D web service, and an in-house Bundler method). We evaluated each based on processing time, ease of use, and the spatial accuracy of the final mosaic produced. Photoscan showed the best performance as it was the fastest and the easiest to use and had the best spatial accuracy (average error of 0.11 m with a standard deviation of 0.02 m). This accuracy is limited by the accuracy of the differential GPS unit (10-20 cm) used to record camera position. Pix4D achieved a mean spatial error of 0.24 m with a standard deviation of 0.03 m, while the Bundler method had the worst mean spatial accuracy of 0.76 m with a standard deviation of 0.15 m. The lower performance of the Bundler method was due to its poor performance in estimating camera focal length, which, in turn, introduced large errors in the Z-axis for the translation equations.

338 citations


Journal ArticleDOI
TL;DR: In this letter, two different injection methodologies are compared and the superiority of contrast-based methods both by physical consideration and by numerical tests carried out on remotely sensed data acquired by IKONOS and Quickbird sensors are motivated.
Abstract: The pansharpening process has the purpose of building a high-resolution multispectral image by fusing low spatial resolution multispectral and high-resolution panchromatic observations. A very credited method to pursue this goal relies upon the injection of details extracted from the panchromatic image into an upsampled version of the low-resolution multispectral image. In this letter, we compare two different injection methodologies and motivate the superiority of contrast-based methods both by physical consideration and by numerical tests carried out on remotely sensed data acquired by IKONOS and Quickbird sensors.

302 citations


Journal ArticleDOI
20 Nov 2014
TL;DR: A compressive technique is introduced that does not require postprocessing, resulting in a predicted frame rate increase by a factor 8 from a compressive ratio of 12.5% with only 28% relative error.
Abstract: Microscopy is an essential tool in a huge range of research areas Until now, microscopy has been largely restricted to imaging in the visible region of the electromagnetic spectrum Here we present a microscope system that uses single-pixel imaging techniques to produce images simultaneously in the visible and shortwave infrared We apply our microscope to the inspection of various objects, including a silicon CMOS sensor, highlighting the complementarity of the visible and shortwave infrared wavebands The system is capable of producing images with resolutions between 32×32 and 128×128 pixels at corresponding frame rates between 10 and 06 Hz We introduce a compressive technique that does not require postprocessing, resulting in a predicted frame rate increase by a factor 8 from a compressive ratio of 125% with only 28% relative error

301 citations


Journal ArticleDOI
TL;DR: The performance of a computational lens-free, holographic on-chip microscope that uses the transport-of-intensity equation, multi-height iterative phase retrieval, and rotational field transformations to perform wide-FOV imaging of pathology samples with comparable image quality to a traditional transmission lens-based microscope is illustrated.
Abstract: Optical examination of microscale features in pathology slides is one of the gold standards to diagnose disease. However, the use of conventional light microscopes is partially limited owing to their relatively high cost, bulkiness of lens-based optics, small field of view (FOV), and requirements for lateral scanning and three-dimensional (3D) focus adjustment. We illustrate the performance of a computational lens-free, holographic on-chip microscope that uses the transport-of-intensity equation, multi-height iterative phase retrieval, and rotational field transformations to perform wide-FOV imaging of pathology samples with comparable image quality to a traditional transmission lens-based microscope. The holographically reconstructed image can be digitally focused at any depth within the object FOV (after image capture) without the need for mechanical focus adjustment and is also digitally corrected for artifacts arising from uncontrolled tilting and height variations between the sample and sensor planes. Using this lens-free on-chip microscope, we successfully imaged invasive carcinoma cells within human breast sections, Papanicolaou smears revealing a high-grade squamous intraepithelial lesion, and sickle cell anemia blood smears over a FOV of 20.5 mm(2). The resulting wide-field lens-free images had sufficient image resolution and contrast for clinical evaluation, as demonstrated by a pathologist's blinded diagnosis of breast cancer tissue samples, achieving an overall accuracy of ~99%. By providing high-resolution images of large-area pathology samples with 3D digital focus adjustment, lens-free on-chip microscopy can be useful in resource-limited and point-of-care settings.

257 citations


Journal ArticleDOI
Maoguo Gong1, Shengmeng Zhao1, Licheng Jiao1, Dayong Tian1, Shuang Wang1 
TL;DR: A novel coarse-to-fine scheme for automatic image registration which is implemented by the scale-invariant feature transform approach equipped with a reliable outlier removal procedure and the maximization of mutual information using a modified Marquardt-Levenberg search strategy in a multiresolution framework.
Abstract: Automatic image registration is a vital yet challenging task, particularly for remote sensing images. A fully automatic registration approach which is accurate, robust, and fast is required. For this purpose, a novel coarse-to-fine scheme for automatic image registration is proposed in this paper. This scheme consists of a preregistration process (coarse registration) and a fine-tuning process (fine registration). To begin with, the preregistration process is implemented by the scale-invariant feature transform approach equipped with a reliable outlier removal procedure. The coarse results provide a near-optimal initial solution for the optimizer in the fine-tuning process. Next, the fine-tuning process is implemented by the maximization of mutual information using a modified Marquardt-Levenberg search strategy in a multiresolution framework. The proposed algorithm is tested on various remote sensing optical and synthetic aperture radar images taken at different situations (multispectral, multisensor, and multitemporal) with the affine transformation model. The experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm.

256 citations


Book ChapterDOI
06 Sep 2014
TL;DR: Comparison of the proposed approach with the state-of-the-art methods on both ground-based and remotely-sensed public hyperspectral image databases shows that the presented method achieves the lowest error rate on all test images in the three datasets.
Abstract: Existing hyperspectral imaging systems produce low spatial resolution images due to hardware constraints. We propose a sparse representation based approach for hyperspectral image super-resolution. The proposed approach first extracts distinct reflectance spectra of the scene from the available hyperspectral image. Then, the signal sparsity, non-negativity and the spatial structure in the scene are exploited to explain a high-spatial but low-spectral resolution image of the same scene in terms of the extracted spectra. This is done by learning a sparse code with an algorithm G-SOMP+. Finally, the learned sparse code is used with the extracted scene spectra to estimate the super-resolution hyperspectral image. Comparison of the proposed approach with the state-of-the-art methods on both ground-based and remotely-sensed public hyperspectral image databases shows that the presented method achieves the lowest error rate on all test images in the three datasets.

249 citations


Journal ArticleDOI
TL;DR: The method uses total variation to regularize an ill-posed problem dictated by a widely used explicit image formation model and produces images of excellent spatial and spectral quality.
Abstract: In this letter, we present a new method for the pansharpening of multispectral satellite imagery. Pansharpening is the process of synthesizing a high spatial resolution multispectral image from a low spatial resolution multispectral image and a high-resolution panchromatic (PAN) image. The method uses total variation to regularize an ill-posed problem dictated by a widely used explicit image formation model. This model is based on the assumptions that a linear combination of the bands of the pansharpened image gives the PAN image and that a decimation of the pansharpened image gives the original multispectral image. Experimental results are based on two real datasets and the quantitative quality of the pansharpened images is evaluated using a number of spatial and spectral metrics, some of which have been recently proposed and do not need a reference image. The proposed method compares favorably to other well-known methods for pansharpening and produces images of excellent spatial and spectral quality.

Journal ArticleDOI
TL;DR: A novel supervised metric learning (SML) algorithm is proposed, which can effectively learn a distance metric for hyperspectral target detection, by which target pixels are easily detected in positive space while the background pixels are pushed into negative space as far as possible.
Abstract: The detection and identification of target pixels such as certain minerals and man-made objects from hyperspectral remote sensing images is of great interest for both civilian and military applications. However, due to the restriction in the spatial resolution of most airborne or satellite hyperspectral sensors, the targets often appear as subpixels in the hyperspectral image (HSI). The observed spectral feature of the desired target pixel (positive sample) is therefore a mixed signature of the reference target spectrum and the background pixels spectra (negative samples), which belong to various land cover classes. In this paper, we propose a novel supervised metric learning (SML) algorithm, which can effectively learn a distance metric for hyperspectral target detection, by which target pixels are easily detected in positive space while the background pixels are pushed into negative space as far as possible. The proposed SML algorithm first maximizes the distance between the positive and negative samples by an objective function of the supervised distance maximization. Then, by considering the variety of the background spectral features, we put a similarity propagation constraint into the SML to simultaneously link the target pixels with positive samples, as well as the background pixels with negative samples, which helps to reject false alarms in the target detection. Finally, a manifold smoothness regularization is imposed on the positive samples to preserve their local geometry in the obtained metric. Based on the public data sets of mineral detection in an Airborne Visible/Infrared Imaging Spectrometer image and fabric and vehicle detection in a Hyperspectral Mapper image, quantitative comparisons of several HSI target detection methods, as well as some state-of-the-art metric learning algorithms, were performed. All the experimental results demonstrate the effectiveness of the proposed SML algorithm for hyperspectral target detection.

Journal ArticleDOI
TL;DR: An extended optical model for the wavefront coded light field microscope is presented and a performance metric based on Fisher information is developed, which is used to choose adequate phase masks parameters.
Abstract: Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective’s back focal plane and at the microscope’s native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.

Journal ArticleDOI
TL;DR: A thematic map of moss health, derived from the multispectral mosaic using a Modified Triangular Vegetation Index (MTVI2), and an indicative map of Moss surface temperature were combined to demonstrate sufficient accuracy of the co-registration methodology for UAV-based monitoring of Antarctic moss beds.
Abstract: In recent times, the use of Unmanned Aerial Vehicles (UAVs) as tools for environmental remote sensing has become more commonplace. Compared to traditional airborne remote sensing, UAVs can provide finer spatial resolution data (up to 1 cm/pixel) and higher temporal resolution data. For the purposes of vegetation monitoring, the use of multiple sensors such as near infrared and thermal infrared cameras are of benefit. Collecting data with multiple sensors, however, requires an accurate spatial co-registration of the various UAV image datasets. In this study, we used an Oktokopter UAV to investigate the physiological state of Antarctic moss ecosystems using three sensors: (i) a visible camera (1 cm/pixel), (ii) a 6 band multispectral camera (3 cm/pixel), and (iii) a thermal infrared camera (10 cm/pixel). Imagery from each sensor was geo-referenced and mosaicked with a combination of commercially available software and our own algorithms based on the Scale Invariant Feature Transform (SIFT). The validation of the mosaic’s spatial co-registration revealed a mean root mean squared error (RMSE) of 1.78 pixels. A thematic map of moss health, derived from the multispectral mosaic using a Modified Triangular Vegetation Index (MTVI2), and an indicative map of moss surface temperature were then combined to demonstrate sufficient accuracy of our co-registration methodology for UAV-based monitoring of Antarctic moss beds.

Journal ArticleDOI
TL;DR: A new method for the automatic detection of cars in unmanned aerial vehicle (UAV) images acquired over urban contexts, which starts with a screening operation in which the asphalted areas are identified in order to make the car detection process faster and more robust.
Abstract: This paper presents a new method for the automatic detection of cars in unmanned aerial vehicle (UAV) images acquired over urban contexts. UAV images are characterized by an extremely high spatial resolution, which makes the detection of cars particularly challenging. The proposed method starts with a screening operation in which the asphalted areas are identified in order to make the car detection process faster and more robust. Subsequently, filtering operations in the horizontal and vertical directions are performed to extract histogram-of-gradient features and to yield a preliminary detection of cars after the computation of a similarity measure with a catalog of cars used as reference. Three different strategies for computing the similarity are investigated. Successively, for the image points identified as potential cars, an orientation value is computed by searching for the highest similarity value in 36 possible directions. The last step is devoted to the merging of the points which belong to the same car because it is likely that a car is identified by more than one point due to the extremely high resolution of UAV images. As outcomes, the proposed method provides the number of cars in the image, as well as the position and orientation for each of them. Interesting experimental results, conducted on a set of real UAV images acquired over an urban area, are presented and discussed.

Journal ArticleDOI
TL;DR: A comprehensive survey of patch-based nonlocal filtering of SAR images, focusing on the two main ingredients of the methods: measuring patch similarity and estimating the parameters of interest from a collection of similar patches.
Abstract: Most current synthetic aperture radar (SAR) systems offer high-resolution images featuring polarimetric, interferometric, multifrequency, multiangle, or multidate information. SAR images, however, suffer from strong fluctuations due to the speckle phenomenon inherent to coherent imagery. Hence, all derived parameters display strong signal-dependent variance, preventing the full exploitation of such a wealth of information. Even with the abundance of despeckling techniques proposed over the last three decades, there is still a pressing need for new methods that can handle this variety of SAR products and efficiently eliminate speckle without sacrificing the spatial resolution. Recently, patch-based filtering has emerged as a highly successful concept in image processing. By exploiting the redundancy between similar patches, it succeeds in suppressing most of the noise with good preservation of texture and thin structures. Extensions of patch-based methods to speckle reduction and joint exploitation of multichannel SAR images (interferometric, polarimetric, or PolInSAR data) have led to the best denoising performance in radar imaging to date. We give a comprehensive survey of patch-based nonlocal filtering of SAR images, focusing on the two main ingredients of the methods: measuring patch similarity and estimating the parameters of interest from a collection of similar patches.

Journal ArticleDOI
TL;DR: A new variational model based on spatial and spectral sparsity priors for the fusion of panchromatic and fused multispectral images is introduced and results show the effectiveness of the proposed pansharpening method compared with the state-of-the-art.
Abstract: The development of multisensor systems in recent years has led to great increase in the amount of available remote sensing data. Image fusion techniques aim at inferring high quality images of a given area from degraded versions of the same area obtained by multiple sensors. This paper focuses on pansharpening, which is the inference of a high spatial resolution multispectral image from two degraded versions with complementary spectral and spatial resolution characteristics: a) a low spatial resolution multispectral image; and b) a high spatial resolution panchromatic image. We introduce a new variational model based on spatial and spectral sparsity priors for the fusion. In the spectral domain we encourage low-rank structure, whereas in the spatial domain we promote sparsity on the local differences. Given the fact that both panchromatic and multispectral images are integrations of the underlying continuous spectra using different channel responses, we propose to exploit appropriate regularizations based on both spatial and spectral links between panchromatic and the fused multispectral images. A weighted version of the vector Total Variation (TV) norm of the data matrix is employed to align the spatial information of the fused image with that of the panchromatic image. With regard to spectral information, two different types of regularization are proposed to promote a soft constraint on the linear dependence between the panchromatic and the fused multispectral images. The first one estimates directly the linear coefficients from the observed panchromatic and low resolution multispectral images by Linear Regression (LR) while the second one employs the Principal Component Pursuit (PCP) to obtain a robust recovery of the underlying low-rank structure. We also show that the two regularizers are strongly related. The basic idea of both regularizers is that the fused image should have low-rank and preserve edge locations. We use a variation of the recently proposed Split Augmented Lagrangian Shrinkage (SALSA) algorithm to effectively solve the proposed variational formulations. Experimental results on simulated and real remote sensing images show the effectiveness of the proposed pansharpening method compared to the state-of-the-art.

Journal ArticleDOI
TL;DR: The adaptation of a smartphone's camera to function as a compact lensless microscope that allows for sub-micron resolution imaging over an ultra-wide field-of-view (FOV) and pixel super-resolution reconstruction.
Abstract: Portable chip-scale microscopy devices can potentially address various imaging needs in mobile healthcare and environmental monitoring. Here, we demonstrate the adaptation of a smartphone's camera to function as a compact lensless microscope. Unlike other chip-scale microscopy schemes, this method uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is based on the shadow imaging technique where the sample is placed on the surface of the image sensor, which captures direct shadow images under illumination. To improve the image resolution beyond the pixel size, we perform pixel super-resolution reconstruction with multiple images at different angles of illumination, which are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. The lensless imaging scheme allows for sub-micron resolution imaging over an ultra-wide field-of-view (FOV). Image acquisition and reconstruction are performed on the device using a custom-built Android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system.

Journal ArticleDOI
TL;DR: Experimental results show that the proposed method outperforms other state-of-the-art super-resolution methods while effectively removing noise.
Abstract: In this paper, we propose a novel example-based method for denoising and super-resolution of medical images. The objective is to estimate a high-resolution image from a single noisy low-resolution image, with the help of a given database of high and low-resolution image patch pairs. Denoising and super-resolution in this paper is performed on each image patch. For each given input low-resolution patch, its high-resolution version is estimated based on finding a nonnegative sparse linear representation of the input patch over the low-resolution patches from the database, where the coefficients of the representation strongly depend on the similarity between the input patch and the sample patches in the database. The problem of finding the nonnegative sparse linear representation is modeled as a nonnegative quadratic programming problem. The proposed method is especially useful for the case of noise-corrupted and low-resolution image. Experimental results show that the proposed method outperforms other state-of-the-art super-resolution methods while effectively removing noise.

Proceedings ArticleDOI
07 Mar 2014
TL;DR: In this paper, a novel snapshot multispectral imager concept based on optical filters monolithically integrated on top of a standard CMOS image sensor is introduced, which overcomes the problems mentioned for scanning applications by snapshot acquisition, where an entire multi-spectral data cube is sensed at one discrete point in time.
Abstract: The adoption of spectral imaging by industry has so far been limited due to the lack of high speed, low cost and compact spectral cameras. Moreover most state-of-the-art spectral cameras utilize some form of spatial or spectral scanning during acquisition, making them ill-suited for analyzing dynamic scenes containing movement. This paper introduces a novel snapshot multispectral imager concept based on optical filters monolithically integrated on top of a standard CMOS image sensor. It overcomes the problems mentioned for scanning applications by snapshot acquisition, where an entire multispectral data cube is sensed at one discrete point in time. This is enabled by depositing interference filters per pixel directly on a CMOS image sensor, extending the traditional Bayer color imaging concept to multi- or hyperspectral imaging without a need for dedicated fore-optics. The monolithic deposition leads to a high degree of design flexibility. This enables systems ranging from application-specific, high spatial resolution cameras with 1 to 4 spectral filters, to hyperspectral snapshot cameras at medium spatial resolutions and filters laid out in cells of 4x4 to 6x6 or more. Through the use of monolithically integrated optical filters it further retains the qualities of compactness, low cost and high acquisition speed, differentiating it from other snapshot spectral cameras.

Journal ArticleDOI
TL;DR: It is demonstrated that the number of pixel change rate (NPCR) and the unified average changing intensity (UACI) can satisfy security and performance requirements in one round of diffusion.
Abstract: This paper presents a new way of image encryption scheme, which consists of two processes; key stream generation process and one-round diffusion process. The first part is a pseudo-random key stream generator based on hyper-chaotic systems. The initial conditions for both hyper-chaotic systems are derived using a 256-bit-long external secret key by applying some algebraic transformations to the key. The original key stream is related to the plain-image which increases the level of security and key sensitivity of the proposed algorithm. The second process employs the image data in order to modify the pixel gray-level values and crack the strong correlations between adjacent pixels of an image simultaneously. In this process, the states which are combinations of two hyper-chaotic systems are selected according to image data itself and are used to encrypt the image. This feature will significantly increase plaintext sensitivity. Moreover, in order to reach higher security and higher complexity, the proposed method employs the image size in key stream generation process. It is demonstrated that the number of pixel change rate (NPCR) and the unified average changing intensity (UACI) can satisfy security and performance requirements (NPCR $$>$$ 99.80 %, UACI $$>$$ 33.56 %) in one round of diffusion. The experimental results reveal that the new image encryption algorithm has the advantages of large key space, high security, high sensitivity, and high speed. Also, the distribution of gray-level values of the encrypted image has a semi-random behavior.

Journal ArticleDOI
TL;DR: A physically-based approach to separate reflection using multiple polarized images with a background scene captured behind glass which automatically finds the optimal separation of the reflection and background layers.
Abstract: We propose a physically-based approach to separate reflection using multiple polarized images with a background scene captured behind glass. The input consists of three polarized images, each captured from the same view point but with a different polarizer angle separated by 45 degrees. The output is the high-quality separation of the reflection and background layers from each of the input images. A main technical challenge for this problem is that the mixing coefficient for the reflection and background layers depends on the angle of incidence and the orientation of the plane of incidence, which are spatially varying over the pixels of an image. Exploiting physical properties of polarization for a double-surfaced glass medium, we propose a multiscale scheme which automatically finds the optimal separation of the reflection and background layers. Through experiments, we demonstrate that our approach can generate superior results to those of previous methods.

Journal ArticleDOI
Jia Song1, Wenhai Li1, Ping Lu1, Yanping Xu1, Liang Chen1, Xiaoyi Bao1 
TL;DR: In this article, an optimized nonlinearity compensation algorithm is proposed to ensure a large wavelength tuning range to maintain the high measurement resolution and accuracy while increasing the sensing length, and the compensated OFDR trace exhibits improved sensing resolution at a short distance, and gradually deteriorates at the far end due to accumulated phase noise induced by fast tuning of the laser wavelength.
Abstract: A novel approach to realize long-range distributed temperature and strain measurement with high spatial resolution, as well as high temperature and strain resolution, is proposed based on optical frequency-domain reflectometry (OFDR). To maintain the high measurement resolution and accuracy while increasing the sensing length, an optimized nonlinearity compensation algorithm is implemented to ensure a large wavelength tuning range. The compensated OFDR trace exhibits improved sensing resolution at a short distance, and the spatial resolution gradually deteriorates at the far end due to accumulated phase noise induced by fast tuning of the laser wavelength. We demonstrated the spatial resolution of 0.3 mm over a single-mode fiber sensing length of over 300 m, and temperature and strain resolution of 0.7 $^{\circ}\hbox{C}$ and 2.3 $\mu\varepsilon$ with spatial resolution of up to 7 cm, respectively.

Journal ArticleDOI
TL;DR: An iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images, which shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability.
Abstract: Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its capability of material decomposition. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical values of DECT. Existing denoising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. In this work, the authors propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. The regularization term enforces the image smoothness by calculating the square sum of neighboring pixel value differences. To retain the boundary sharpness of the decomposed images, the authors detect the edges in the CT images before decomposition. These edge pixels have small weights in the calculation of the regularization term. Distinct from the existing denoising algorithms applied on the images before or after decomposition, the method has an iterative process for noise suppression, with decomposition performed in each iteration. The authors implement the proposed algorithm using a standard conjugate gradient algorithm. The method performance is evaluated using an evaluation phantom (Catphan©600) and an anthropomorphic head phantom. The results are compared with those generated using direct matrix inversion with no noise suppression, a denoising method applied on the decomposed images, and an existing algorithm with similar formulation as the proposed method but with an edge-preserving regularization term. Results: On the Catphan phantom, the method maintains the same spatial resolution on the decomposed images as that of the CT images before decomposition (8 pairs/cm) while significantly reducing their noise standard deviation. Compared to that obtained by the direct matrix inversion, the noise standard deviation in the images decomposed by the proposed algorithm is reduced by over 98%. Without considering the noise correlation properties in the formulation, the denoising scheme degrades the spatial resolution to 6 pairs/cm for the same level of noise suppression. Compared to the edge-preserving algorithm, the method achieves better low-contrast detectability. A quantitative study is performed on the contrast-rod slice of Catphan phantom. The proposed method achieves lower electron density measurement error as compared to that by the direct matrix inversion, and significantly reduces the error variation by over 97%. On the head phantom, the method reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusions: The authors propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. By exploring the full variance-covariance properties of the decomposed images and utilizing the edge predetection, the proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability.

Journal ArticleDOI
TL;DR: This work proposes a fast pan-sharpening process based on nearest-neighbor diffusion with the aim to enhance the salient spatial features while preserving spectral fidelity, and expects this algorithm to facilitate fine feature extraction from satellite images.
Abstract: Commercial multispectral satellite datasets, such as WorldView-2 and Geoeye-1 images, are often delivered with a high-spatial resolution panchromatic image (PAN) as well as a corresponding lower resolution multispectral image (MSI). Certain fine features are only visible on the PAN but are difficult to discern on the MSI. To fully utilize the high-spatial resolution of the PAN and the rich spectral information from the MSI, a pan-sharpening process can be carried out. However, difficulties arise in maintaining radiometric accuracy, particularly for applications other than visual assessment. We propose a fast pan-sharpening process based on nearest-neighbor diffusion with the aim to enhance the salient spatial features while preserving spectral fidelity. Our approach assumes that each pixel spectrum in the pan-sharpened image is a weighted linear mixture of the spectra of its immediate neighboring superpixels; it treats each spectrum as its smallest element of operation, which is different from the most existing algorithms that process each band separately. Our approach is shown to be capable of preserving salient spatial and spectral features. We expect this algorithm to facilitate fine feature extraction from satellite images.

Journal ArticleDOI
TL;DR: The experimental results suggest that the proposed two-step sparse coding method with patch normalization (PN-TSSC) for image pan-sharpening can effectively improve the spatial resolution of a MS image, with little color distortion.
Abstract: Remote sensing image pan-sharpening is an important way of enhancing the spatial resolution of a multispectral (MS) image by fusing it with a registered panchromatic (PAN) image. The traditional pan-sharpening methods often suffer from color distortion and are still far from being able to synthesize a real high-resolution MS image, as could be directly acquired by a better sensor. Inspired by the rapid development of sparse representation theory, we propose a two-step sparse coding method with patch normalization (PN-TSSC) for image pan-sharpening. Traditional one-step sparse coding has difficulty in choosing dictionary atoms when the structural information is weak or lost. By exploiting the local similarity between the MS and PAN images, the proposed sparse coding method deals with the dictionary atoms in two steps, which has been found to be an effective way of overcoming this problem. The experimental results with IKONOS, QuickBird, and WorldView-2 data suggest that the proposed method can effectively improve the spatial resolution of a MS image, with little color distortion. The pan-sharpened high-resolution MS image outperforms those images fused by other traditional and state-of-the-art methods, both quantitatively and perceptually.

Proceedings ArticleDOI
23 Jun 2014
TL;DR: A dynamic gradient sparsity penalty is proposed for regularization of image fusion from a high resolution panchromatic image and a low resolution multispectral image at the same geographical location to efficiently solve the severely ill-posed problem.
Abstract: In this paper, we propose a novel method for image fusion from a high resolution panchromatic image and a low resolution multispectral image at the same geographical location. Different from previous methods, we do not make any assumption about the upsampled multispectral image, but only assume that the fused image after downsampling should be close to the original multispectral image. This is a severely ill-posed problem and a dynamic gradient sparsity penalty is thus proposed for regularization. Incorporating the intra- correlations of different bands, this penalty can effectively exploit the prior information (e.g. sharp boundaries) from the panchromatic image. A new convex optimization algorithm is proposed to efficiently solve this problem. Extensive experiments on four multispectral datasets demonstrate that the proposed method significantly outperforms the state-of-the-arts in terms of both spatial and spectral qualities.

Journal ArticleDOI
TL;DR: A highly symmetric excitation optical field and optimized detection scheme are proposed to harness the total point-spread function for a microscopic system, showing that the proposed scheme provides a better image quality.
Abstract: The resolution limit of far-field optical microscopy is reexamined with a full vectorial theoretical analysis. A highly symmetric excitation optical field and optimized detection scheme are proposed to harness the total point-spread function for a microscopic system. Spatial resolution of better than $1/6\ensuremath{\lambda}$ is shown to be obtainable, giving rise to a resolution better than 100 nm with visible light excitation. The experimental measurement is applied to examine nonfluorescent samples. A lateral resolution of $1/5\ensuremath{\lambda}$ is obtained in truly far-field optical microscopy with a working distance greater than $\ensuremath{\sim}500\ensuremath{\lambda}$. Comparison is made for the far-field microscopic measurement with that of a nearfield scanning optical microscopy, showing that the proposed scheme provides a better image quality.

Proceedings ArticleDOI
02 May 2014
TL;DR: This work proposes a simple patch-based algorithm to super-resolve the low-resolution views of the light field using the high- resolution patches captured using a high-resolution SLR camera.
Abstract: Current light field (LF) cameras provide low spatial resolution and limited depth-of-field (DOF) control when compared to traditional digital SLR (DSLR) cameras. We show that a hybrid imaging system consisting of a standard LF camera and a high-resolution standard camera enables (a) achieve high-resolution digital refocusing, (b) better DOF control than LF cameras, and (c) render graceful high-resolution viewpoint variations, all of which were previously unachievable. We propose a simple patch-based algorithm to super-resolve the low-resolution views of the light field using the high-resolution patches captured using a high-resolution SLR camera. The algorithm does not require the LF camera and the DSLR to be co-located or for any calibration information regarding the two imaging systems. We build an example prototype using a Lytro camera (380×380 pixel spatial resolution) and a 18 megapixel (MP) Canon DSLR camera to generate a light field with 11 MP resolution (9× super-resolution) and about 1 over 9 th of the DOF of the Lytro camera. We show several experimental results on challenging scenes containing occlusions, specularities and complex non-lambertian materials, demonstrating the effectiveness of our approach.

Journal ArticleDOI
TL;DR: In this article, the authors define the ideal speckle size in relation to the specimen size and acquisition system, and provide practical guidelines to identify the optimal settings of an airbrush gun, in order to produce a pattern that is as close as possible to the desired one while minimizing the scatter of speckles sizes.
Abstract: The quality of strain measurements by digital image correlation (DIC) strongly depends on the quality of the pattern on the specimen's surface. An ideal pattern should be highly contrasted, stochastic, and isotropic. In addition, the speckle pattern should have an average size that exceeds the image pixel size by a factor of 3–5. (Smaller speckles cause poor contrast, and larger speckles cause poor spatial resolution.) Finally, the ideal pattern should have a limited scatter in terms of speckle sizes.The aims of this study were: (i) to define the ideal speckle size in relation to the specimen size and acquisition system; (ii) provide practical guidelines to identify the optimal settings of an airbrush gun, in order to produce a pattern that is as close as possible to the desired one while minimizing the scatter of speckle sizes.Patterns of different sizes were produced using two different airbrush guns with different settings of the four most influential factors (dilution, airflow setting, spraying distance, and air pressure). A full-factorial DOE strategy was implemented to explore the four factors at two levels each: 36 specimens were analyzed for each of the 16 combinations.The images were acquired using the digital cameras of a DIC system. The distribution of speckle sizes was analyzed to calculate the average speckle size and the standard deviation of the corresponding truncated Gaussian distribution. A mathematical model was built to enable prediction of the average speckle size in relation to the airbrush gun settings.We showed that it is possible to obtain a pattern with a highly controlled average and a limited scatter of speckle sizes, so as to match the ideal distribution of speckle sizes for DIC. Although the settings identified here apply only to the specific equipment being used, this method can be adapted to any airbrush to produce a desired speckle pattern.