scispace - formally typeset
Search or ask a question
Topic

Image resolution

About: Image resolution is a research topic. Over the lifetime, 38768 publications have been published within this topic receiving 736529 citations. The topic is also known as: resolution & pixel count.


Papers
More filters
Journal ArticleDOI
TL;DR: Model studies suggest that the author may be able to localize multiple cortical sources with spatial resolution as good as PET with this technique, while retaining a much finer grained picture of activity over time.
Abstract: We describe a comprehensive linear approach to the problem of imaging brain activity with high temporal as well as spatial resolution based on combining EEG and MEG data with anatomical constraints derived from MRI images. The "inverse problem" of estimating the distribution of dipole strengths over the cortical surface is highly underdetermined, even given closely spaced EEG and MEG recordings. We have obtained much better solutions to this problem by explicitly incorporating both local cortical orientation as well as spatial covariance of sources and sensors into our formulation. An explicit polygonal model of the cortical manifold is first constructed as follows: (1) slice data in three orthogonal planes of section (needle-shaped voxels) are combined with a linear deblurring technique to make a single high-resolution 3-D image (cubic voxels), (2) the image is recursively flood-filled to determine the topology of the gray-white matter border, and (3) the resulting continuous surface is refined by relaxing it against the original 3-D gray-scale image using a deformable template method, which is also used to computationally flatten the cortex for easier viewing. The explicit solution to an error minimization formulation of an optimal inverse linear operator (for a particular cortical manifold, sensor placement, noise and prior source covariance) gives rise to a compact expression that is practically computable for hundreds of sensors and thousands of sources. The inverse solution can then be weighted for a particular (averaged) event using the sensor covariance for that event. Model studies suggest that we may be able to localize multiple cortical sources with spatial resolution as good as PET with this technique, while retaining a much finer grained picture of activity over time.

1,950 citations

Proceedings ArticleDOI
01 Sep 2009
TL;DR: This paper proposes a unified framework for combining the classical multi-image super-resolution and the example-based super- resolution, and shows how this combined approach can be applied to obtain super resolution from as little as a single image (with no database or prior examples).
Abstract: Methods for super-resolution can be broadly classified into two families of methods: (i) The classical multi-image super-resolution (combining images obtained at subpixel misalignments), and (ii) Example-Based super-resolution (learning correspondence between low and high resolution image patches from a database). In this paper we propose a unified framework for combining these two families of methods. We further show how this combined approach can be applied to obtain super resolution from as little as a single image (with no database or prior examples). Our approach is based on the observation that patches in a natural image tend to redundantly recur many times inside the image, both within the same scale, as well as across different scales. Recurrence of patches within the same image scale (at subpixel misalignments) gives rise to the classical super-resolution, whereas recurrence of patches across different scales of the same image gives rise to example-based super-resolution. Our approach attempts to recover at each pixel its best possible resolution increase based on its patch redundancy within and across scales.

1,923 citations

Journal ArticleDOI
TL;DR: This article proposes a vision‐based method using a deep architecture of convolutional neural networks (CNNs) for detecting concrete cracks without calculating the defect features, and shows quite better performances and can indeed find concrete cracks in realistic situations.
Abstract: A number of image processing techniques IPTs have been implemented for detecting civil infrastructure defects to partially replace human-conducted onsite inspections. These IPTs are primarily used to manipulate images to extract defect features, such as cracks in concrete and steel surfaces. However, the extensively varying real-world situations e.g., lighting and shadow changes can lead to challenges to the wide adoption of IPTs. To overcome these challenges, this article proposes a vision-based method using a deep architecture of convolutional neural networks CNNs for detecting concrete cracks without calculating the defect features. As CNNs are capable of learning image features automatically, the proposed method works without the conjugation of IPTs for extracting features. The designed CNN is trained on 40 K images of 256 × 256 pixel resolutions and, consequently, records with about 98% accuracy. The trained CNN is combined with a sliding window technique to scan any image size larger than 256 × 256 pixel resolutions. The robustness and adaptability of the proposed approach are tested on 55 images of 5,888 × 3,584 pixel resolutions taken from a different structure which is not used for training and validation processes under various conditions e.g., strong light spot, shadows, and very thin cracks. Comparative studies are conducted to examine the performance of the proposed CNN using traditional Canny and Sobel edge detection methods. The results show that the proposed method shows quite better performances and can indeed find concrete cracks in realistic situations.

1,898 citations

Book
01 Jan 1992
TL;DR: The Image Processing Handbook, Seventh Edition delivers an accessible and up-to-date treatment of image processing, offering broad coverage and comparison of algorithms, approaches, and outcomes.
Abstract: Consistently rated as the best overall introduction to computer-based image processing, The Image Processing Handbook covers two-dimensional (2D) and three-dimensional (3D) imaging techniques, image printing and storage methods, image processing algorithms, image and feature measurement, quantitative image measurement analysis, and more. Incorporating image processing and analysis examples at all scales, from nano- to astro-, this Seventh Edition: Features a greater range of computationally intensive algorithms than previous versions Provides better organization, more quantitative results, and new material on recent developments Includes completely rewritten chapters on 3D imaging and a thoroughly revamped chapter on statistical analysis Contains more than 1700 references to theory, methods, and applications in a wide variety of disciplines Presents 500+ entirely new figures and images, with more than two-thirds appearing in color The Image Processing Handbook, Seventh Edition delivers an accessible and up-to-date treatment of image processing, offering broad coverage and comparison of algorithms, approaches, and outcomes.

1,858 citations

Journal ArticleDOI
TL;DR: Although some numerical measures correlate well with the observers' response for a given compression technique, they are not reliable for an evaluation across different techniques, and a graphical measure called Hosaka plots can be used to appropriately specify not only the amount, but also the type of degradation in reconstructed images.
Abstract: A number of quality measures are evaluated for gray scale image compression. They are all bivariate, exploiting the differences between corresponding pixels in the original and degraded images. It is shown that although some numerical measures correlate well with the observers' response for a given compression technique, they are not reliable for an evaluation across different techniques. A graphical measure called Hosaka plots, however, can be used to appropriately specify not only the amount, but also the type of degradation in reconstructed images.

1,660 citations


Network Information
Related Topics (5)
Pixel
136.5K papers, 1.5M citations
95% related
Image processing
229.9K papers, 3.5M citations
91% related
Image segmentation
79.6K papers, 1.8M citations
86% related
Convolutional neural network
74.7K papers, 2M citations
85% related
Feature extraction
111.8K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023881
20222,003
20211,250
20201,541
20191,660
20181,689