scispace - formally typeset
Search or ask a question
Topic

Image resolution

About: Image resolution is a research topic. Over the lifetime, 38768 publications have been published within this topic receiving 736529 citations. The topic is also known as: resolution & pixel count.


Papers
More filters
Proceedings Article
08 Dec 2014
TL;DR: A novel recurrent neural network model that is capable of extracting information from an image or video by adaptively selecting a sequence of regions or locations and only processing the selected regions at high resolution is presented.
Abstract: Applying convolutional neural networks to large images is computationally expensive because the amount of computation scales linearly with the number of image pixels. We present a novel recurrent neural network model that is capable of extracting information from an image or video by adaptively selecting a sequence of regions or locations and only processing the selected regions at high resolution. Like convolutional neural networks, the proposed model has a degree of translation invariance built-in, but the amount of computation it performs can be controlled independently of the input image size. While the model is non-differentiable, it can be trained using reinforcement learning methods to learn task-specific policies. We evaluate our model on several image classification tasks, where it significantly outperforms a convolutional neural network baseline on cluttered images, and on a dynamic visual control problem, where it learns to track a simple object without an explicit training signal for doing so.

1,649 citations

Proceedings ArticleDOI
23 Jun 2008
TL;DR: It is shown that a small set of randomly chosen raw patches from training images of similar statistical nature to the input image generally serve as a good dictionary, in the sense that the computed representation is sparse and the recovered high-resolution image is competitive or even superior in quality to images produced by other SR methods.
Abstract: This paper addresses the problem of generating a super-resolution (SR) image from a single low-resolution input image. We approach this problem from the perspective of compressed sensing. The low-resolution image is viewed as downsampled version of a high-resolution image, whose patches are assumed to have a sparse representation with respect to an over-complete dictionary of prototype signal-atoms. The principle of compressed sensing ensures that under mild conditions, the sparse representation can be correctly recovered from the downsampled signal. We will demonstrate the effectiveness of sparsity as a prior for regularizing the otherwise ill-posed super-resolution problem. We further show that a small set of randomly chosen raw patches from training images of similar statistical nature to the input image generally serve as a good dictionary, in the sense that the computed representation is sparse and the recovered high-resolution image is competitive or even superior in quality to images produced by other SR methods.

1,546 citations

Proceedings ArticleDOI
29 Jul 2007
TL;DR: A simple modification to a conventional camera is proposed to insert a patterned occluder within the aperture of the camera lens, creating a coded aperture, and introduces a criterion for depth discriminability which is used to design the preferred aperture pattern.
Abstract: A conventional camera captures blurred versions of scene information away from the plane of focus. Camera systems have been proposed that allow for recording all-focus images, or for extracting depth, but to record both simultaneously has required more extensive hardware and reduced spatial resolution. We propose a simple modification to a conventional camera that allows for the simultaneous recovery of both (a) high resolution image information and (b) depth information adequate for semi-automatic extraction of a layered depth representation of the image. Our modification is to insert a patterned occluder within the aperture of the camera lens, creating a coded aperture. We introduce a criterion for depth discriminability which we use to design the preferred aperture pattern. Using a statistical model of images, we can recover both depth information and an all-focus image from single photographs taken with the modified camera. A layered depth map is then extracted, requiring user-drawn strokes to clarify layer assignments in some cases. The resulting sharp image and layered depth map can be combined for various photographic applications, including automatic scene segmentation, post-exposure refocusing, or re-rendering of the scene from an alternate viewpoint.

1,489 citations

Journal ArticleDOI
TL;DR: In this paper, the spatial structure of images as a function of spatial resolution is measured for selecting the appropriate scale for remote sensing, and graphs are obtained by imaging the scene at fine resolution and then collapsing the image to successively coarser resolutions while calculating the local variance.

1,277 citations

Journal ArticleDOI
TL;DR: Using a high-efficiency grating interferometer for hard X rays (10-30 keV) and a phase-stepping technique, separate radiographs of the phase and absorption profiles of bulk samples can be obtained from a single set of measurements.
Abstract: Using a high-efficiency grating interferometer for hard X rays (10-30 keV) and a phase-stepping technique, separate radiographs of the phase and absorption profiles of bulk samples can be obtained from a single set of measurements. Tomographic reconstruction yields quantitative three-dimensional maps of the X-ray refractive index, with a spatial resolution down to a few microns. The method is mechanically robust, requires little spatial coherence and monochromaticity, and can be scaled up to large fields of view, with a detector of correspondingly moderate spatial resolution. These are important prerequisites for use with laboratory X-ray sources.

1,264 citations


Network Information
Related Topics (5)
Pixel
136.5K papers, 1.5M citations
95% related
Image processing
229.9K papers, 3.5M citations
91% related
Image segmentation
79.6K papers, 1.8M citations
86% related
Convolutional neural network
74.7K papers, 2M citations
85% related
Feature extraction
111.8K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023881
20222,003
20211,250
20201,541
20191,660
20181,689