Topic

# Image restoration

About: Image restoration is a research topic. Over the lifetime, 23420 publications have been published within this topic receiving 509518 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

TL;DR: In this paper, a method for finding the optical flow pattern is presented which assumes that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image, and an iterative implementation is shown which successfully computes the Optical Flow for a number of synthetic image sequences.

Abstract: Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. A method for finding the optical flow pattern is presented which assumes that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image. An iterative implementation is shown which successfully computes the optical flow for a number of synthetic image sequences. The algorithm is robust in that it can handle image sequences that are quantized rather coarsely in space and time. It is also insensitive to quantization of brightness levels and additive noise. Examples are included where the assumption of smoothness is violated at singular points or along lines in the image.

10,249 citations

•

[...]

TL;DR: This chapter discusses two Dimensional Systems and Mathematical Preliminaries and their applications in Image Analysis and Computer Vision, as well as image reconstruction from Projections and image enhancement.

Abstract: Introduction. 1. Two Dimensional Systems and Mathematical Preliminaries. 2. Image Perception. 3. Image Sampling and Quantization. 4. Image Transforms. 5. Image Representation by Stochastic Models. 6. Image Enhancement. 7. Image Filtering and Restoration. 8. Image Analysis and Computer Vision. 9. Image Reconstruction From Projections. 10. Image Data Compression.

8,403 citations

•

[...]

01 Dec 2003

TL;DR: 1. Fundamentals of Image Processing, 2. Intensity Transformations and Spatial Filtering, and 3. Frequency Domain Processing.

Abstract: 1. Introduction. 2. Fundamentals. 3. Intensity Transformations and Spatial Filtering. 4. Frequency Domain Processing. 5. Image Restoration. 6. Color Image Processing. 7. Wavelets. 8. Image Compression. 9. Morphological Image Processing. 10. Image Segmentation. 11. Representation and Description. 12. Object Recognition.

6,204 citations

••

[...]

TL;DR: A general mathematical and experimental methodology to compare and classify classical image denoising algorithms and a nonlocal means (NL-means) algorithm addressing the preservation of structure in a digital image are defined.

Abstract: The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics In spite of the sophistication of the recently proposed methods, m

3,859 citations

••

[...]

TL;DR: Ordered subsets EM (OS-EM) provides a restoration imposing a natural positivity condition and with close links to the EM algorithm, applicable in both single photon (SPECT) and positron emission tomography (PET).

Abstract: The authors define ordered subset processing for standard algorithms (such as expectation maximization, EM) for image restoration from projections. Ordered subsets methods group projection data into an ordered sequence of subsets (or blocks). An iteration of ordered subsets EM is defined as a single pass through all the subsets, in each subset using the current estimate to initialize application of EM with that data subset. This approach is similar in concept to block-Kaczmarz methods introduced by Eggermont et al. (1981) for iterative reconstruction. Simultaneous iterative reconstruction (SIRT) and multiplicative algebraic reconstruction (MART) techniques are well known special cases. Ordered subsets EM (OS-EM) provides a restoration imposing a natural positivity condition and with close links to the EM algorithm. OS-EM is applicable in both single photon (SPECT) and positron emission tomography (PET). In simulation studies in SPECT, the OS-EM algorithm provides an order-of-magnitude acceleration over EM, with restoration quality maintained. >

3,588 citations