scispace - formally typeset
Search or ask a question
Topic

Image warping

About: Image warping is a research topic. Over the lifetime, 8261 publications have been published within this topic receiving 160432 citations. The topic is also known as: warping.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: A technique for image encoding in which local operators of many scales but identical shape serve as the basis functions, which tends to enhance salient image features and is well suited for many image analysis tasks as well as for image compression.
Abstract: We describe a technique for image encoding in which local operators of many scales but identical shape serve as the basis functions. The representation differs from established techniques in that the code elements are localized in spatial frequency as well as in space. Pixel-to-pixel correlations are first removed by subtracting a lowpass filtered copy of the image from the image itself. The result is a net data compression since the difference, or error, image has low variance and entropy, and the low-pass filtered image may represented at reduced sample density. Further data compression is achieved by quantizing the difference image. These steps are then repeated to compress the low-pass image. Iteration of the process at appropriately expanded scales generates a pyramid data structure. The encoding process is equivalent to sampling the image with Laplacian operators of many scales. Thus, the code tends to enhance salient image features. A further advantage of the present code is that it is well suited for many image analysis tasks as well as for image compression. Fast algorithms are described for coding and decoding.

6,550 citations

Proceedings ArticleDOI

[...]

01 Aug 1996
TL;DR: This paper describes a sampled representation for light fields that allows for both efficient creation and display of inward and outward looking views, and describes a compression system that is able to compress the light fields generated by more than a factor of 100:1 with very little loss of fidelity.
Abstract: A number of techniques have been proposed for flying through scenes by redisplaying previously rendered or digitized views. Techniques have also been proposed for interpolating between views by warping input images, using depth information or correspondences between multiple images. In this paper, we describe a simple and robust method for generating new views from arbitrary camera positions without depth information or feature matching, simply by combining and resampling the available images. The key to this technique lies in interpreting the input images as 2D slices of a 4D function the light field. This function completely characterizes the flow of light through unobstructed space in a static scene with fixed illumination. We describe a sampled representation for light fields that allows for both efficient creation and display of inward and outward looking views. We hav e created light fields from large arrays of both rendered and digitized images. The latter are acquired using a video camera mounted on a computer-controlled gantry. Once a light field has been created, new views may be constructed in real time by extracting slices in appropriate directions. Since the success of the method depends on having a high sample rate, we describe a compression system that is able to compress the light fields we have generated by more than a factor of 100:1 with very little loss of fidelity. We also address the issues of antialiasing during creation, and resampling during slice extraction. CR Categories: I.3.2 [Computer Graphics]: Picture/Image Generation — Digitizing and scanning, Viewing algorithms; I.4.2 [Computer Graphics]: Compression — Approximate methods Additional keywords: image-based rendering, light field, holographic stereogram, vector quantization, epipolar analysis

4,018 citations

Proceedings ArticleDOI

[...]

27 Jun 2016
TL;DR: A Neural Algorithm of Artistic Style is introduced that can separate and recombine the image content and style of natural images and provide new insights into the deep image representations learned by Convolutional Neural Networks and demonstrate their potential for high level image synthesis and manipulation.
Abstract: Rendering the semantic content of an image in different styles is a difficult image processing task. Arguably, a major limiting factor for previous approaches has been the lack of image representations that explicitly represent semantic information and, thus, allow to separate image content from style. Here we use image representations derived from Convolutional Neural Networks optimised for object recognition, which make high level image information explicit. We introduce A Neural Algorithm of Artistic Style that can separate and recombine the image content and style of natural images. The algorithm allows us to produce new images of high perceptual quality that combine the content of an arbitrary photograph with the appearance of numerous wellknown artworks. Our results provide new insights into the deep image representations learned by Convolutional Neural Networks and demonstrate their potential for high level image synthesis and manipulation.

3,428 citations

Book ChapterDOI

[...]

11 May 2004
TL;DR: By proving that this scheme implements a coarse-to-fine warping strategy, this work gives a theoretical foundation for warping which has been used on a mainly experimental basis so far and demonstrates its excellent robustness under noise.
Abstract: We study an energy functional for computing optical flow that combines three assumptions: a brightness constancy assumption, a gradient constancy assumption, and a discontinuity-preserving spatio-temporal smoothness constraint. In order to allow for large displacements, linearisations in the two data terms are strictly avoided. We present a consistent numerical scheme based on two nested fixed point iterations. By proving that this scheme implements a coarse-to-fine warping strategy, we give a theoretical foundation for warping which has been used on a mainly experimental basis so far. Our evaluation demonstrates that the novel method gives significantly smaller angular errors than previous techniques for optical flow estimation. We show that it is fairly insensitive to parameter variations, and we demonstrate its excellent robustness under noise.

2,701 citations

Proceedings ArticleDOI

[...]

29 Jul 2007
TL;DR: In this article, seam carving is used for content-aware image resizing for both reduction and expansion, where an optimal 8-connected path of pixels on a single image from top to bottom, or left to right, where optimality is defined by an image energy function.
Abstract: Effective resizing of images should not only use geometric constraints, but consider the image content as well We present a simple image operator called seam carving that supports content-aware image resizing for both reduction and expansion A seam is an optimal 8-connected path of pixels on a single image from top to bottom, or left to right, where optimality is defined by an image energy function By repeatedly carving out or inserting seams in one direction we can change the aspect ratio of an image By applying these operators in both directions we can retarget the image to a new size The selection and order of seams protect the content of the image, as defined by the energy function Seam carving can also be used for image content enhancement and object removal We support various visual saliency measures for defining the energy of an image, and can also include user input to guide the process By storing the order of seams in an image we create multi-size images, that are able to continuously change in real time to fit a given size

1,584 citations


Network Information
Related Topics (5)
Image processing
229.9K papers, 3.5M citations
80% related
Deep learning
79.8K papers, 2.1M citations
80% related
Convolutional neural network
74.7K papers, 2M citations
79% related
Feature (computer vision)
128.2K papers, 1.7M citations
78% related
Image segmentation
79.6K papers, 1.8M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023137
2022263
2021217
2020267
2019300
2018303