scispace - formally typeset
Search or ask a question

Showing papers on "Imaging phantom published in 2007"


Journal ArticleDOI
TL;DR: To evaluate the validity of different approaches to determine the signal‐to‐noise ratio (SNR) in MRI experiments with multi‐element surface coils, parallel imaging, and different reconstruction filters, a large number of experiments were conducted with single‐element coils and parallel imaging.
Abstract: Purpose To evaluate the validity of different approaches to determine the signal-to-noise ratio (SNR) in MRI experiments with multi-element surface coils, parallel imaging, and different reconstruction filters. Materials and Methods Four different approaches of SNR calculation were compared in phantom measurements and in vivo based on: 1) the pixel-by-pixel standard deviation (SD) in multiple repeated acquisitions; 2) the signal statistics in a difference image; and 3) and 4) the statistics in two separate regions of a single image employing either the mean value or the SD of background noise. Different receiver coil systems (with one and eight channels), acquisitions with and without parallel imaging, and five different reconstruction filters were compared. Results Averaged over all phantom measurements, the deviations from the reference value provided by the multiple-acquisitions method are 2.7% (SD 1.6%) for the difference method, 37.7% (25.9%) for the evaluation of the mean value of background noise, and 34.0% (38.1%) for the evaluation of the SD of background noise. Conclusion The conventionally determined SNR based on separate signal and noise regions in a single image will in general not agree with the true SNR measured in images after the application of certain reconstruction filters, multichannel reconstruction, or parallel imaging. J. Magn. Reson. Imaging 2007. © 2007 Wiley-Liss, Inc.

846 citations


Journal Article
TL;DR: The Gemini TF whole-body scanner represents the first commercially available fully 3-dimensional PET scanner that achieves time-of-flight capability as well as conventional imaging capabilities.
Abstract: Results from a new PET/CT scanner using lutetium-yttrium oxyorthosilicate (LYSO) crystals for the PET component are presented. This scanner, which operates in a fully 3-dimensional mode, has a diameter of 90 cm and an axial field of view of 18 cm. It uses 4 × 4 × 22 mm3 LYSO crystals arranged in a pixelated Anger-logic detector design. This scanner was designed to perform as a high-performance conventional PET scanner as well as provide good timing resolution to operate as a time-of-flight (TOF) PET scanner. Methods: Performance measurements on the scanner were made using the National Electrical Manufacturers Association (NEMA) NU2-2001 procedures to benchmark its conventional imaging capabilities. The scatter fraction and noise equivalent count (NEC) measurements with the NEMA cylinder (20-cm diameter) were repeated for 2 larger cylinders (27-cm and 35-cm diameter), which better represent average and heavy patients. New measurements were designed to characterize its intrinsic timing resolution capability, which defines its TOF performance. Additional measurements to study the impact of pulse pileup at high counting rates on timing, as well as energy and spatial, resolution were also performed. Finally, to characterize the effect of TOF reconstruction on lesion contrast and noise, the standard NEMA/International Electrotechnical Commission torso phantom as well as a large 35-cm-diameter phantom with both hot and cold spheres were imaged for varying scan times. Results: The transverse and axial resolution near the center is 4.8 mm. The absolute sensitivity of this scanner measured with a 70-cm-long line source is 6.6 cps/kBq, whereas scatter fraction is 27% measured with a 70-cm-long line source in a 20-cm-diameter cylinder. For the same line source cylinder, the peak NEC rate is measured to be 125 kcps at an activity concentration of 17.4 kBq/mL (0.47 μCi/mL). The 2 larger cylinders showed a decrease in the peak NEC due to increased attenuation, scatter, and random coincidences, and the peak occurs at lower activity concentrations. The system coincidence timing resolution was measured to be 585 ps. The timing resolution changes as a function of the singles rate due to pulse pileup and could impact TOF image reconstruction. Image-quality measurements with the torso phantom show that very high quality images can be obtained with short scan times (1–2 min per bed position). However, the benefit of TOF is more apparent with the large 35-cm-diameter phantom, where small spheres are detectable only with TOF information for short scan times. Conclusion: The Gemini TF whole-body scanner represents the first commercially available fully 3-dimensional PET scanner that achieves TOF capability as well as conventional imaging capabilities. The timing resolution is also stable over a long duration, indicating the practicality of this device. Excellent image quality is achieved for whole-body studies in 10–30 min, depending on patient size. The most significant improvement with TOF is seen for the heaviest patients.

630 citations


Journal ArticleDOI
TL;DR: The minimum variance (MV) adaptive beamformer is applied to medical ultrasound imaging and shown significant improvement in image quality compared to delay-and-sum (DAS).
Abstract: We have applied the minimum variance (MV) adaptive beamformer to medical ultrasound imaging and shown significant improvement in image quality compared to delay-and-sum (DAS). We demonstrate reduced main-lobe width and suppression of sidelobes on both simulated and experimental RF data of closely spaced wire targets, which gives potential contrast and resolution enhancement in medical images. The method is applied to experimental RF data from a heart phantom, in which we show increased resolution and improved definition of the ventricular walls. A potential weakness of adaptive beamformers is sensitivity to errors in the assumed wavefield parameters. We look at two ways to increase robustness of the proposed method; spatial smoothing and diagonal loading. We show that both are controlled by a single parameter that can move the performance from that of a MV beamformer to that of a DAS beamformer. We evaluate the sensitivity to velocity errors and show that reliable amplitude estimates are achieved while the mainlobe width and sidelobe levels are still significantly lower than for the conventional beam-former.

535 citations


Journal ArticleDOI
TL;DR: The gradient-based segmentation method applied on denoised and deblurred FDG-PET images proved to be more accurate than the source-to-background ratio method.
Abstract: PURPOSE: A new gradient-based method for segmenting FDG-PET images is described and validated. METHODS: The proposed method relies on the watershed transform and hierarchical cluster analysis. To allow a better estimation of the gradient intensity, iteratively reconstructed images were first denoised and deblurred with an edge-preserving filter and a constrained iterative deconvolution algorithm. Validation was first performed on computer-generated 3D phantoms containing spheres, then on a real cylindrical Lucite phantom containing spheres of different volumes ranging from 2.1 to 92.9 ml. Moreover, laryngeal tumours from seven patients were segmented on PET images acquired before laryngectomy by the gradient-based method and the thresholding method based on the source-to-background ratio developed by Daisne (Radiother Oncol 2003;69:247-50). For the spheres, the calculated volumes and radii were compared with the known values; for laryngeal tumours, the volumes were compared with the macroscopic specimens. Volume mismatches were also analysed. RESULTS: On computer-generated phantoms, the deconvolution algorithm decreased the mis-estimate of volumes and radii. For the Lucite phantom, the gradient-based method led to a slight underestimation of sphere volumes (by 10-20%), corresponding to negligible radius differences (0.5-1.1 mm); for laryngeal tumours, the segmented volumes by the gradient-based method agreed with those delineated on the macroscopic specimens, whereas the threshold-based method overestimated the true volume by 68% (p=0.014). Lastly, macroscopic laryngeal specimens were totally encompassed by neither the threshold-based nor the gradient-based volumes. CONCLUSION: The gradient-based segmentation method applied on denoised and deblurred images proved to be more accurate than the source-to-background ratio method.

416 citations


Journal ArticleDOI
TL;DR: In this article, Monte Carlo simulations were used to assess the efficiency of the computed tomography dose index (CTDI100) parameter for wide (40 mm) collimated x-ray beams.
Abstract: The computed tomography dose index (CTDI100) is typically measured using a 100 mm long pencil ion chamber with cylindrical polymethyl methacrylate (PMMA) dosimetry phantoms. While this metric was useful in the era of single slice CT scanners with collimated slice thicknesses of 10 mm or less, the efficiency of this metric in multi-slice CT scanners with wide (40 mm) collimated x-ray beams is unknown. Monte Carlo simulations were used to assess the efficiency of the CTDI100 parameter for wider beam collimations. The simulations utilized the geometry of a commercially available CT scanner, with modeled polyenergetic x-ray spectra. Dose spread functions (DSFs) were computed along the length of 12.4 mm diam rods placed at several radii in infinitely long 160 mm diam (head) and 320 mm diam (body) PMMA phantoms. The DSFs were used to compute radiation dose profiles for slice thicknesses from 1 to 400 mm. CTDI00 efficiency was defined as the fraction of the dose along a PMMA rod collected in a 100 mm length centered on the CT slice position, divided by the total dose deposited along an infinitely long PMMA rod. For a 10 mm slice thickness, a 120 kVp x-ray spectrum, and the PMMA head phantom, the efficiency of the CTDI00 was 82% and 90% for the center and peripheral holes, respectively. The corresponding efficiency values for the body phantom were 63% and 88%. These values are reduced by only 1% when a 40 mm slice thickness was studied, so the use of CTDI00 for 40 mm wide x-ray beams is no less valid than its use for 10 mm beam widths. However, these data illustrate that the efficiency of the CTDI100 measurement even with 10 mm beam widths is low and, consequently, dose computations which are derived from this metric may not be as accurate as desirable.

414 citations


Journal ArticleDOI
TL;DR: A novel multiecho reconstruction technique that achieves simultaneous water‐fat decomposition and T2* estimation and therefore has potential for the simultaneous characterization of hepatic steatosis (fatty infiltration) and iron overload.
Abstract: Purpose To describe and demonstrate the feasibility of a novel multiecho reconstruction technique that achieves simultaneous water-fat decomposition and T2* estimation. The method removes interference of water-fat separation with iron-induced T2* effects and therefore has potential for the simultaneous characterization of hepatic steatosis (fatty infiltration) and iron overload. Materials and Methods The algorithm called “T2*-IDEAL” is based on the IDEAL water-fat decomposition method. A novel “complex field map” construct is used to estimate both R2* (1/T2*) and local B0 field inhomogeneities using an iterative least-squares estimation method. Water and fat are then decomposed from source images that are corrected for both T2* and B0 field inhomogeneity. Results It was found that a six-echo multiecho acquisition using the shortest possible echo times achieves an excellent balance of short scan and reliable R2* measurement. Phantom experiments demonstrate the feasibility with high accuracy in R2* measurement. Promising preliminary in vivo results are also shown. Conclusion The T2*-IDEAL technique has potential applications in imaging of diffuse liver disease for evaluation of both hepatic steatosis and iron overload in a single breath-hold. J. Magn. Reson. Imaging 2007;26:1153–1161. © 2007 Wiley-Liss, Inc.

413 citations


Journal ArticleDOI
TL;DR: Initial results indicate that operator-independent, whole-breast imaging and the detection of breast masses are feasible, and future studies will focus on improved detection and differentiation of masses in support of the long-term goal of increasing the specificity of breast exams.
Abstract: Although mammography is the gold standard for breast imaging, its limitations result in a high rate of biopsies of benign lesions and a significant false negative rate for women with dense breasts. In response to this imaging performance gap we have been developing a clinical breast imaging methodology based on the principles of ultrasound tomography. The Computed Ultrasound Risk Evaluation (CURE) system has been designed with the clinical goals of whole breast, operator-independent imaging, and differentiation of breast masses. This paper describes the first clinical prototype, summarizes our initial image reconstruction techniques, and presents phantom and preliminary in vivo results. In an initial assessment of its in vivo performance, we have examined 50 women with the CURE prototype and obtained the following results. (1) Tomographic imaging of breast architecture is demonstrated in both CURE modes of reflection and transmission imaging. (2) In-plane spatial resolution of 0.5 mm in reflection and 4 mm in transmission is achieved. (3) Masses > 15 mm in size are routinely detected. (4) Reflection, sound speed, and attenuation imaging of breast masses are demonstrated. These initial results indicate that operator-independent, whole-breast imaging and the detection of breast masses are feasible. Future studies will focus on improved detection and differentiation of masses in support of our long-term goal of increasing the specificity of breast exams, thereby reducing the number of biopsies of benign masses.

363 citations


Journal ArticleDOI
TL;DR: To combine gradient‐echo (GRE) imaging with a multipoint water–fat separation method known as “iterative decomposition of water and fat with echo asymmetry and least squares estimation” (IDEAL) for uniform water-fat separation, the IDEAL technique is introduced.
Abstract: Purpose To combine gradient-echo (GRE) imaging with a multipoint water–fat separation method known as “iterative decomposition of water and fat with echo asymmetry and least squares estimation” (IDEAL) for uniform water–fat separation. Robust fat suppression is necessary for many GRE imaging applications; unfortunately, uniform fat suppression is challenging in the presence of B0 inhomogeneities. These challenges are addressed with the IDEAL technique. Materials and Methods Echo shifts for three-point IDEAL were chosen to optimize noise performance of the water–fat estimation, which is dependent on the relative proportion of water and fat within a voxel. Phantom experiments were performed to validate theoretical SNR predictions. Theoretical echo combinations that maximize noise performance are discussed, and examples of clinical applications at 1.5T and 3.0T are shown. Results The measured SNR performance validated theoretical predictions and demonstrated improved image quality compared to unoptimized echo combinations. Clinical examples of the liver, breast, heart, knee, and ankle are shown, including the combination of IDEAL with parallel imaging. Excellent water–fat separation was achieved in all cases. The utility of recombining water and fat images into “in-phase,” “out-of-phase,” and “fat signal fraction” images is also discussed. Conclusion IDEAL-SPGR provides robust water–fat separation with optimized SNR performance at both 1.5T and 3.0T with multicoil acquisitions and parallel imaging in multiple regions of the body. J. Magn. Reson. Imaging 2007;25:644–652. © 2007 Wiley-Liss, Inc.

321 citations


Journal ArticleDOI
Yong Yang1, Eduard Schreibmann1, Tianfang Li1, Chuang Wang1, Lei Xing1 
TL;DR: The CBCT can be employed directly for dose calculation for a disease site such as the prostate, where there is little motion artefact and a large discrepancy between the original treatment plan and the CBCT (or mCBCT)-based calculation is noted.
Abstract: On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. Here we evaluate the achievable accuracy in using a kV CBCT for dose calculation. Relative electron density as a function of HU was obtained for both planning CT (pCT) and CBCT using a Catphan-600 calibration phantom. The CBCT calibration stability was monitored weekly for 8 consecutive weeks. A clinical treatment planning system was employed for pCT- and CBCT-based dose calculations and subsequent comparisons. Phantom and patient studies were carried out. In the former study, both Catphan-600 and pelvic phantoms were employed to evaluate the dosimetric performance of the full-fan and half-fan scanning modes. To evaluate the dosimetric influence of motion artefacts commonly seen in CBCT images, the Catphan-600 phantom was scanned with and without cyclic motion using the pCT and CBCT scanners. The doses computed based on the four sets of CT images (pCT and CBCT with/without motion) were compared quantitatively. The patient studies included a lung case and three prostate cases. The lung case was employed to further assess the adverse effect of intra-scan organ motion. Unlike the phantom study, the pCT of a patient is generally acquired at the time of simulation and the anatomy may be different from that of CBCT acquired at the time of treatment delivery because of organ deformation. To tackle the problem, we introduced a set of modified CBCT images (mCBCT) for each patient, which possesses the geometric information of the CBCT but the electronic density distribution mapped from the pCT with the help of a BSpline deformable image registration software. In the patient study, the dose computed with the mCBCT was used as a surrogate of the 'ground truth'. We found that the CBCT electron density calibration curve differs moderately from that of pCT. No significant fluctuation was observed in the calibration over the period of 8 weeks. For the static phantom, the doses computed based on pCT and CBCT agreed to within 1%. A notable difference in CBCT- and pCT-based dose distributions was found for the motion phantom due to the motion artefacts which appeared in the CBCT images (the maximum discrepancy was found to be approximately 3.0% in the high dose region). The motion artefacts-induced dosimetric inaccuracy was also observed in the lung patient study. For the prostate cases, the mCBCT- and CBCT-based dose calculations yielded very close results (<2%). Coupled with the phantom data, it is concluded that the CBCT can be employed directly for dose calculation for a disease site such as the prostate, where there is little motion artefact. In the prostate case study, we also noted a large discrepancy between the original treatment plan and the CBCT (or mCBCT)-based calculation, suggesting the importance of inter-fractional organ movement and the need for adaptive therapy to compensate for the anatomical changes in the future.

315 citations


Journal ArticleDOI
TL;DR: Findings support the hypothesis that water content variations in the breast play an influential role in dictating the overall dielectric property distributions and indicate that the microwave properties in the breasts are more heterogeneous than previously believed based on ex vivo property measurements reported in the literature.

290 citations


Journal ArticleDOI
TL;DR: This review provides an overview of digital radiography as it exists, including advanced imaging such as computed tomography (CT), cone beam volumetric imaging, and micro-CT as relevant to the practice of endodontics.

Journal ArticleDOI
TL;DR: Standardisation of acquisition, reconstruction and ROI methods is preferred for SUV quantification in multi-centre trials and small unavoidable differences in methodology can be accommodated by performing a phantom study to assess inter-institute correction factors.
Abstract: Standardised uptake values (SUVs) depend on acquisition, reconstruction and region of interest (ROI) parameters. SUV quantification in multi-centre trials therefore requires standardisation of acquisition and analysis protocols. However, standardisation is difficult owing to the use of different scanners, image reconstruction and data analysis software. In this study we evaluated whether SUVs, obtained at three different institutes, may be directly compared after calibration and correction for inter-institute differences. First, an anthropomorphic thorax phantom containing variously sized spheres and activities, simulating tumours, was scanned and processed in each institute to evaluate differences in scanner calibration. Secondly, effects of image reconstruction and ROI method on recovery coefficients were studied. Next, SUVs were derived for tumours in 23 subjects. Of these 23 patients, four and ten were scanned in two institutes on an HR+ PET scanner and nine were scanned in one institute on an ECAT EXACT PET scanner. All phantom and clinical data were reconstructed using iterative reconstruction with various iterations, with both measured (MAC) and segmented attenuation correction (SAC) and at various image resolutions. Activity concentrations (AC) or SUVs were derived using various ROI isocontours. Phantom data revealed differences in SUV quantification of up to 30%. After application-specific calibration, recovery coefficients obtained in each institute were equal to within 15%. Varying the ROI isocontour value resulted in a predictable change in SUV (or AC) for both phantom and clinical data. Variation of image resolution resulted in a predictable change in SUV quantification for large spheres/tumours (>5 cc) only. For smaller tumours (<2 cc), differences of up to 40% were found between high (7 mm) and low (10 mm) resolution images. Similar differences occurred when data were reconstructed with a small number of iterations. Finally, no significant differences between MAC and SAC reconstructed data were observed, except for tumours near the diaphragm. Standardisation of acquisition, reconstruction and ROI methods is preferred for SUV quantification in multi-centre trials. Small unavoidable differences in methodology can be accommodated by performing a phantom study to assess inter-institute correction factors.

Journal ArticleDOI
TL;DR: In this article, the authors considered the holographic model of interacting dark energy in non-flat universe and showed that the interacting holographic dark energy can be described by a phantom scalar field.
Abstract: In this paper we consider the holographic model of interacting dark energy in non-flat universe. With the choice of c≤0.84, the interacting holographic dark energy can be described by a phantom scalar field. Then we show this phantomic description of the holographic dark energy with c≤0.84 and reconstruct the potential of the phantom scalar field.

Journal ArticleDOI
TL;DR: Standardized quantification of CAC yielded comparable image noise, spatial resolution, and mass scores among different patient sizes and different CT systems and facilitated reduced radiation dose for small and medium-size patients.
Abstract: Purpose: To develop a consensus standard for quantification of coronary artery calcium (CAC). Materials and Methods: A standard for CAC quantification was developed by a multi-institutional, multimanufacturer international consortium of cardiac radiologists, medical physicists, and industry representatives. This report specifically describes the standardization of scan acquisition and reconstruction parameters, the use of patient size–specific tube current values to achieve a prescribed image noise, and the use of the calcium mass score to eliminate scanner- and patient size–based variations. An anthropomorphic phantom containing calibration inserts and additional phantom rings were used to simulate small, medium-size, and large patients. The three phantoms were scanned by using the recommended protocols for various computed tomography (CT) systems to determine the calibration factors that relate measured CT numbers to calcium hydroxyapatite density and to determine the tube current values that yield comp...

Journal ArticleDOI
TL;DR: CT attenuation values vary significantly between different manufacturers' multi-detector row CT scanners, among different generations of multi- Detection row CT scanning equipment, and with individual combinations of scanner and convolution kernel.
Abstract: Purpose: To determine the dependence of absolute computed tomographic (CT) attenuation values on multi–detector row CT scanner type, convolution kernel, and tube current by using an anthropomorphic phantom. Materials and Methods: A customized phantom was designed with tissue-equivalent materials to simulate contrast material–enhanced liver, spleen, pancreas, aorta, kidney, 0- and 50-HU cylindric renal cysts, muscle, and fat. The phantom was scanned with five multi–detector row CT scanners (LightSpeed QXi, GE Healthcare, Milwaukee, Wis; MX8000, Philips Medical Systems, Best, the Netherlands; and Volume Zoom, Sensation 16 and Sensation 64, Siemens Medical Solutions, Forchheim, Germany) on five separate occasions with 120 kVp, low and high tube current settings, 3.00–3.75-mm section thickness, 50% overlap, and standard and high-spatial-resolution kernels. Standardized regions of interest (ROIs) were used to obtain 3510 attenuation measurements. Attenuation dependence on scanner, kernel, and tube current was ...

Journal ArticleDOI
TL;DR: An effective metal artifact-suppressing algorithm is implemented to improve the quality of CBCT images and was able to minimize the metal artifacts in phantom and patient studies.
Abstract: Purpose: Computed tomography (CT) streak artifacts caused by metallic implants remain a challenge for the automatic processing of image data. The impact of metal artifacts in the soft-tissue region is magnified in cone-beam CT (CBCT), because the soft-tissue contrast is usually lower in CBCT images. The goal of this study was to develop an effective offline processing technique to minimize the effect. Methods and Materials: The geometry calibration cue of the CBCT system was used to track the position of the metal object in projection views. The three-dimensional (3D) representation of the object can be established from only two user-selected viewing angles. The position of the shadowed region in other views can be tracked by projecting the 3D coordinates of the object. Automatic image segmentation was used followed by a Laplacian diffusion method to replace the pixels inside the metal object with the boundary pixels. The modified projection data were then used to reconstruct a new CBCT image. The procedure was tested in phantoms, prostate cancer patients with implanted gold markers and metal prosthesis, and a head-and-neck patient with dental amalgam in the teeth. Results: Both phantom and patient studies demonstrated that the procedure was able to minimize the metal artifacts. Soft-tissue visibility was improved near or away from the metal object. The processing time was 1–2 s per projection. Conclusion: We have implemented an effective metal artifact-suppressing algorithm to improve the quality of CBCT images.

Journal ArticleDOI
TL;DR: An alternative approach to correct for flip angle inaccuracies in the driven equilibrium single pulse observation of T1 (DESPOT1) T1 mapping method is investigated.
Abstract: Purpose To investigate an alternative approach to correct for flip angle inaccuracies in the driven equilibrium single pulse observation of T1 (DESPOT1) T1 mapping method. Materials and Methods While DESPOT1 is a robust method for rapid whole-brain voxelwise mapping of the longitudinal relaxation time, the approach is inherently sensitive to inaccuracies in the transmitted flip angle, defined by the B1 field, which become more severe with increased field. Here we propose an extension of the DESPOT1 technique, involving the additional acquisition of an inversion-prepared SPGR image alongside the conventional multiangle DESPOT1 data. From these combined data both B1 and T1 may be determined with high accuracy and precision. The method is evaluated at 3T with phantom and in vivo imaging experiments, with derived T1 estimates compared with values calculated from multiple inversion time inversion recovery data. Results The method provides robust correction of flip angle variations, with less than 5% error compared with reference values for T1 between 300 msec and 2500 msec. Conclusions The described approach, dubbed DESPOT1-HIFI, permits whole-brain T1 mapping at 3T, with 1 mm3 isotropic voxels, in a clinically feasible time (≈10 minutes) with T1 accuracy greater than 5% and with high precision. J. Magn. Reson. Imaging 2007;26:1106–1111. © 2007 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: The improvement in intra-myocardial strain measurements due to temporal fitting is apparent in strain histograms, and also in identifying regions of dysfunctional myocardium in studies of patients with infarcts.
Abstract: Displacement encoding with stimulated echoes (DENSE) encodes myocardial tissue displacement into the phase of the MR image. Cine DENSE allows for rapid quantification of myocardial displacement at multiple cardiac phases through the majority of the cardiac cycle. For practical sensitivities to motion, relatively high displacement encoding frequencies are used and phase wrapping typically occurs. In order to obtain absolute measures of displacement, a two-dimensional (2-D) quality-guided phase unwrapping algorithm was adapted to unwrap both spatially and temporally. Both a fully automated algorithm and a faster semi-automated algorithm are proposed. A method for computing the 2-D trajectories of discrete points in the myocardium as they move through the cardiac cycle is introduced. The error in individual displacement measurements is reduced by fitting a time series to sequential displacement measurements along each trajectory. This improvement is in turn reflected in strain maps, which are derived directly from the trajectories. These methods were validated both in vivo and on a rotating phantom. Further measurements were made to optimize the displacement encoding frequency and to estimate the baseline strain noise both on the phantom and in vivo. The fully automated phase unwrapping algorithm was successful for 767 out of 800 images (95.9%), and the semi-automated algorithm was successful for 786 out of 800 images (98.3%). The accuracy of the tracking algorithm for typical cardiac displacements on a rotating phantom is 0.24plusmn0.15mm. The optimal displacement encoding frequency is in the region of 0.1 cycles/mm, and, for 2 scans of 17-s duration, the strain noise after temporal fitting was estimated to be 2.5plusmn3.0% at end-diastole, 3.1plusmn3.1% at end-systole, and 5.3plusmn5.0% in mid-diastole. The improvement in intra-myocardial strain measurements due to temporal fitting is apparent in strain histograms, and also in identifying regions of dysfunctional myocardium in studies of patients with infarcts

Journal ArticleDOI
TL;DR: A promising method to incorporate tissue structural information into the reconstruction of diffusion-based fluorescence imaging is introduced, which regularizes the inversion problem with a Laplacian-type matrix, which inherently smoothes pre-defined tissue, but allows discontinuities between adjacent regions.
Abstract: A promising method to incorporate tissue structural information into the reconstruction of diffusion-based fluorescence imaging is introduced. The method regularizes the inversion problem with a Laplacian-type matrix, which inherently smoothes pre-defined tissue, but allows discontinuities between adjacent regions. The technique is most appropriately used when fluorescence tomography is combined with structural imaging systems. Phantom and simulation studies were used to illustrate significant improvements in quantitative imaging and linearity of response with the new algorithm. Images of an inclusion containing the fluorophore Lutetium Texaphyrin (Lutex) embedded in a cylindrical phantom are more accurate than in situations where no structural information is available, and edge artifacts which are normally prevalent were almost entirely suppressed. Most importantly, spatial priors provided a higher degree of sensitivity and accuracy to fluorophore concentration, though both techniques suffer from image bias caused by excitation signal leakage. The use of spatial priors becomes essential for accurate recovery of fluorophore distributions in complex tissue volumes. Simulation studies revealed an inability of the “no-priors” imaging algorithm to recover Lutex fluorescence yield in domains derived from T1 weighted images of a human breast. The same domains were reconstructed accurately to within 75% of the true values using prior knowledge of the internal tissue structure. This algorithmic approach will be implemented in an MR-coupled fluorescence spectroscopic tomography system, using the MR images for the structural template and the fluorescence data for region quantification.

Journal ArticleDOI
TL;DR: It could be shown that the imaging system in its present configuration is capable of producing three-dimensional images of objects with an overall size in the range of several millimeters to centimeters, and how the technique can be scaled for imaging of smaller objects with higher resolution.
Abstract: A three-dimensional photoacoustic imaging method is presented that uses a Mach-Zehnder interferometer for measurement of acoustic waves generated in an object by irradiation with short laser pulses. The signals acquired with the interferometer correspond to line integrals over the acoustic wave field. An algorithm for reconstruction of a three-dimensional image from such signals measured at multiple positions around the object is shown that is a combination of a frequency-domain technique and the inverse Radon transform. From images of a small source scanning across the interferometer beam it is estimated that the spatial resolution of the imaging system is in the range of 100 to about 300 mum, depending on the interferometer beam width and the size of the aperture formed by the scan length divided by the source-detector distance. By taking an image of a phantom it could be shown that the imaging system in its present configuration is capable of producing three-dimensional images of objects with an overall size in the range of several millimeters to centimeters. Strategies are proposed how the technique can be scaled for imaging of smaller objects with higher resolution.

Journal ArticleDOI
TL;DR: The visual comparison of despeckled in vivo ultrasound images from liver and carotid artery shows that the proposed LPND method could effectively preserve edges and detailed structures while thoroughly suppressing speckle.
Abstract: A new speckle reduction method, i.e., Laplacian pyramid-based nonlinear diffusion (LPND), is proposed for medical ultrasound imaging. With this method, speckle is removed by nonlinear diffusion filtering of bandpass ultrasound images in Laplacian pyramid domain. For nonlinear diffusion in each pyramid layer, a gradient threshold is automatically determined by a variation of median absolute deviation (MAD) estimator. The performance of the proposed LPND method has been compared with that of other speckle reduction methods, including the recently proposed speckle reducing anisotropic diffusion (SRAD) and nonlinear coherent diffusion (NCD). In simulation and phantom studies, an average gain of 1.55 dB and 1.34 dB in contrast-to-noise ratio was obtained compared to SRAD and NCD, respectively. The visual comparison of despeckled in vivo ultrasound images from liver and carotid artery shows that the proposed LPND method could effectively preserve edges and detailed structures while thoroughly suppressing speckle. These preliminary results indicate that the proposed speckle reduction method could improve image quality and the visibility of small structures and fine details in medical ultrasound imaging

Journal ArticleDOI
TL;DR: Surfaces doses can be reduced if radiologic technologists can better center patients within the CT gantry and result in as much as 30% reduction in surface dose.
Abstract: OBJECTIVE The purpose of this study was to determine with phantom and patient imaging the effect of an automatic patient-centering technique on the radiation dose associated with MDCTSUBJECTS AND METHODS A 32-cm CT dose index (CTDI) phantom was scanned with 64-MDCT in three positions: gantry isocenter and 30 and 60 mm below the isocenter of the scanner gantry In each position, surface, peripheral, and volume CTDIs were estimated with a standard 10-cm pencil ionization chamber The institutional review board approved the study with 63 patients (36 men, 27 women; mean age, 51 years; age range, 22-83 years) undergoing chest (n = 18) or abdominal (n = 45) CT using the z-axis automatic exposure control technique Each patient was positioned according to the region being scanned and then was centered in the gantry Before scanning of a patient, automatic centering software was used to estimate patient off-centering and percentage of dose reduction with optimum recentering Data were analyzed with linear cor

Journal Article
TL;DR: The iterative thresholding method (ITM) used to estimate the PET volumes without anatomic a priori knowledge and its application to clinical images sufficiently estimated the clinical volumes, and the lesion dosimetry is feasible with sufficient accuracy using PET images only.
Abstract: The segmentation of metastatic volumes in PET is usually performed by thresholding methods. In a clinical application, the optimum threshold obtained from the adaptive thresholding method requires a priori estimation of the lesion volume from anatomic images such as CT. We describe an iterative thresholding method (ITM) used to estimate the PET volumes without anatomic a priori knowledge and its application to clinical images. Methods: The ITM is based on threshold-volume curves at varying source-to-background (S/B) ratio acquired from a body phantom. The spheres and background were filled either with 18F-FDG or Na124I (124I). These calibrated S/B-threshold-volume curves were used in estimating the volume by applying an iterative procedure. The ITM was validated with a PET phantom containing spheres and with 39 PET tumors that were discernable on CT by using whole-body 18F-FDG (15 patients) and 124I PET/CT (9 patients): The measured S/B ratios of the lesions were estimated from PET images, and their volumes were iteratively calculated using the calibrated S/B-threshold-volume curves. The resulting PET volumes were then compared with the known sphere inner volume and CT volumes of tumors that served as gold standards. Results: Phantom data analysis showed that the S/B-threshold-volume curves of 18F-FDG and 124I were similar. The average absolute deviation (expressed as a percentage of the expected volume) obtained in the PET validation phantom was 10% for volumes larger than 1.0 mL; sphere volumes of 0.5 mL showed a significantly larger deviation. For patients, the average absolute deviation for volumes between 0.8 and 7.5 mL was about 9% (31 lesions), whereas volumes larger than 7.5 mL showed an average volume mismatch of 15% (8 lesions). Conclusion: The ITM sufficiently estimated the clinical volumes in the range of 0.8–7.5 mL; volumes larger than 7.5 mL showed greater deviations that were still acceptable. These findings are associated with the limitation of the ITM. The ITM is especially useful for lesions that are only visible on PET. As a consequence, the lesion dosimetry is feasible with sufficient accuracy using PET images only.

Journal ArticleDOI
TL;DR: The results of this independent field test showed the improved physical characteristics of the F120 scanner over the previous microPET series systems, which will be useful for imaging studies on small rodents and brains of larger animals.
Abstract: The microPET Focus 120 scanner is a third-generation animal PET scanner dedicated to rodent imaging. Here, we report the results of scanner performance testing. Methods: A 68Ge point source was used to measure energy resolution, which was determined for each crystal and averaged. Spatial resolution was measured using a 22Na point source with a nominal size of 0.25 mm at the system center and various off-center positions. Absolute sensitivity without attenuation was determined by extrapolating the data measured using an 18F line source and multiple layers of absorbers. Scatter fraction and counting rate performance were measured using 2 different cylindric phantoms simulating rat and mouse bodies. Sensitivity, scatter fraction, and noise equivalent counting rate (NECR) experiments were repeated under 4 different conditions (energy window, 250∼750 keV or 350∼650 keV; coincidence window, 6 or 10 ns). A performance phantom with hot-rod inserts of various sizes was scanned, and several animal studies were also performed. Results: Energy resolution at a 511-keV photopeak was 18.3% on average. Radial, tangential, and axial resolution of images reconstructed with the Fourier rebinning (FORE) and filtered backprojection (FBP) algorithms were 1.18 (radial), 1.13 (tangential), and 1.45 mm full width at half maximum (FWHM) (axial) at center and 2.35 (radial), 1.66 (tangential), and 2.00 mm FWHM (axial) at a radial offset of 2 cm. Absolute sensitivities at transaxial and axial centers were 7.0% (250∼750 keV, 10 ns), 6.7% (250∼750 keV, 6 ns), 4.0% (350∼650 keV, 10 ns), and 3.8% (350∼650 keV, 6 ns). Scatter fractions were 15.9% (mouse phantom) and 35.0% (rat phantom) for 250∼750 keV and 6 ns. Peak NECR was 869 kcps at 3,242 kBq/mL (mouse phantom) and 228 kcps at 290 kBq/mL (rat phantom) at 250∼750 keV and 6 ns. Hot-rod inserts of 1.6-mm diameter were clearly identified, and animal studies illustrated the feasibility of this system for studies of whole rodents and mid-sized animal brains. Conclusion: The results of this independent field test showed the improved physical characteristics of the F120 scanner over the previous microPET series systems. This system will be useful for imaging studies on small rodents and brains of larger animals.

Journal ArticleDOI
TL;DR: The CBCT system using an FPD resulted in fewer artifacts than the CBCTsystem using an II in this particular study, and fewer artifacts were noted in images produced by the particular FPD CBCT used in this investigation.
Abstract: Objective An in vitro study was designed to investigate the influence of projection data discontinuity–related artifacts in limited-volume cone-beam computerized tomography (CBCT) imaging of the jaws. Study design Test objects were positioned in 4 patterns in a water-filled phantom as follows: bimandible and vertebrae, bimandible, left mandible and vertebrae, and left mandible. The CT imaging of the left molar region was performed using image intensifier (II)– and flat panel detector (FPD)–based CBCT scanners. The CT value of the mandible and the adjacent soft tissue region were analyzed for density by means of an 8-bit grayscale. Results The effects of artifacts were scored as the difference in relative density between the lingual and buccal soft tissue. The intensity of artifacts increased when more objects were presented outside the area being imaged. Fewer artifacts were noted in images produced by the particular FPD CBCT used in this investigation. Conclusion The CBCT system using an FPD resulted in fewer artifacts than the CBCT system using an II in this particular study.

Journal ArticleDOI
Chaincy Kuo1, Olivier Coquoz1, Tamara L. Troy1, Heng Xu1, Bradley W. Rice1 
TL;DR: A new method is described for obtaining a 3-D reconstruction of a bioluminescent light source distribution inside a living animal subject, from multispectral images of the surface light emission acquired on charge-coupled device (CCD) camera.
Abstract: A new method is described for obtaining a 3-D reconstruction of a bioluminescent light source distribution inside a living animal subject, from multispectral images of the surface light emission acquired on charge-coupled device (CCD) camera. The method uses the 3-D surface topography of the animal, which is obtained from a structured light illumination technique. The forward model of photon transport is based on the diffusion approximation in homogeneous tissue with a local planar boundary approximation for each mesh element, allowing rapid calculation of the forward Green's function kernel. Absorption and scattering properties of tissue are measured a priori as input to the algorithm. By using multispectral images, 3-D reconstructions of luminescent sources can be derived from images acquired from only a single view. As a demonstration, the reconstruction technique is applied to determine the location and brightness of a source embedded in a homogeneous phantom subject in the shape of a mouse. The technique is then evaluated with real mouse models in which calibrated sources are implanted at known locations within living tissue. Finally, reconstructions are demonstrated in a PC3M-luc (prostate tumor line) metastatic tumor model in nude mice.

Journal ArticleDOI
TL;DR: This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism.
Abstract: Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images-the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid phantom is performed in three steps: polygonization of the voxel phantom, organ modeling via NURBS surfaces and phantom voxelization. Two 3D graphic tools, 3D-DOCTOR and Rhinoceros, were utilized to polygonize the newborn voxel phantom and generate NURBS surfaces, while an in-house MATLAB code was used to voxelize the resulting NURBS model into a final computational phantom ready for use in Monte Carlo radiation transport calculations. A total of 126 anatomical organ and tissue models, including 38 skeletal sites and 31 cartilage sites, were described within the hybrid phantom using either NURBS or polygon surfaces. A male hybrid newborn phantom was constructed following the development of the female phantom through the replacement of female-specific organs with male-specific organs. The outer body contour and internal anatomy of the NURBS-based phantoms were adjusted to match anthropometric and reference newborn data reported by the International Commission on Radiological Protection in their Publication 89. The voxelization process was designed to accurately convert NURBS models to a voxel phantom with minimum volumetric change. A sensitivity study was additionally performed to better understand how the meshing tolerance and voxel resolution would affect volumetric changes between the hybrid-NURBS and hybrid-voxel phantoms. The male and female hybrid-NURBS phantoms were constructed in a manner so that all internal organs approached their ICRP reference masses to within 1%, with the exception of the skin (-6.5% relative error) and brain (-15.4% relative error). Both hybrid-voxel phantoms were constructed with an isotropic voxel resolution of 0.663 mm--equivalent to the ICRP 89 reference thickness of the newborn skin (dermis and epidermis). Hybrid-NURBS phantoms used to create their voxel counterpart retain the non-uniform scalability of stylized phantoms, while maintaining the anatomic realism of segmented voxel phantoms with respect to organ shape, depth and inter-organ positioning.

Journal ArticleDOI
TL;DR: The findings suggest that MRE can quantitate asymmetries in muscle tone that could previously only be identified subjectively by examination.

Journal ArticleDOI
TL;DR: The methods and results for predicting, measuring and correcting geometric distortions in a 3 T clinical magnetic resonance (MR) scanner for the purpose of image guidance in radiation treatment planning can be predicted negating the need for individual distortion calculation for a variety of other imaging sequences.
Abstract: The work presented herein describes our methods and results for predicting, measuring and correcting geometric distortions in a 3 T clinical magnetic resonance (MR) scanner for the purpose of image guidance in radiation treatment planning. Geometric inaccuracies due to both inhomogeneities in the background field and nonlinearities in the applied gradients were easily visualized on the MR images of a regularly structured three-dimensional (3D) grid phantom. From a computed tomography scan, the locations of just under 10 000 control points within the phantom were accurately determined in three dimensions using a MATLAB-based computer program. MR distortion was then determined by measuring the corresponding locations of the control points when the phantom was imaged using the MR scanner. Using a reversed gradient method, distortions due to gradient nonlinearities were separated from distortions due to inhomogeneities in the background B0 field. Because the various sources of machine-related distortions can be individually characterized, distortions present in other imaging sequences (for which 3D distortion cannot accurately be measured using phantom methods) can be predicted negating the need for individual distortion calculation for a variety of other imaging sequences. Distortions were found to be primarily caused by gradient nonlinearities and maximum image distortions were reported to be less than those previously found by other researchers at 1.5 T. Finally, the image slices were corrected for distortion in order to provide geometrically accurate phantom images.

Journal ArticleDOI
TL;DR: Clinical image quality and dose efficiency can be improved on scanners with bowtie filters if care is exercised when positioning patients and Automatically providing patient specific centering and scan parameter selection information can help the technologist improve workflow, achieve more consistent imagequality and reduce patient dose.
Abstract: Although x-ray intensity shaping filters (bowtie filters) have been used since the introduction of some of the earliest CT scanner models, the clinical implications on dose and noise are not well understood. To achieve the intended dose and noise advantage requires the patient to be centered in the scan field of view. In this study we explore the implications of patient centering in clinical practice. We scanned various size and shape phantoms on a GE LightSpeed VCT scanner using each available source filter with the phantom centers positioned at 0, 3, and 6 cm below the center of rotation (isocenter). Surface doses were measured along with image noise over a large image region. Regression models of surface dose and noise were generated as a function of phantom size and centering error. Methods were also developed to determine the amount of miscentering using a scout scan projection radiograph (SPR). These models were then used to retrospectively evaluate 273 adult body patients for clinical implications. When miscentered by 3 and 6 cm, the surface dose on a 32 cm CTDI phantom increased by 18% and 41% while image noise also increased by 6% and 22%. The retrospective analysis of adult body scout SPR scans shows that 46% of patients were miscentered in elevation by 20-60 mm with a mean position 23 mm below the center of rotation (isocenter). The analysis indicated a surface dose penalty of up to 140% with a mean dose penalty of 33% assuming that tube current is increased to compensate for the increased noise due to miscentering. Clinical image quality and dose efficiency can be improved on scanners with bowtie filters if care is exercised when positioning patients. Automatically providing patient specific centering and scan parameter selection information can help the technologist improve workflow, achieve more consistent image quality and reduce patient dose.