scispace - formally typeset
Search or ask a question
Topic

Imaging phantom

About: Imaging phantom is a research topic. Over the lifetime, 28170 publications have been published within this topic receiving 510003 citations. The topic is also known as: phantom.


Papers
More filters
Journal ArticleDOI
TL;DR: There was no PVE for spheres with ≥ 28-mm diameters, and differences between SUVmax and THmax were reduced by using SCS for AC, which was suitable not to determine gross tumour volume but to determine biological target volume (BTV).
Abstract: Fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) is an important method for detecting tumours, planning radiotherapy treatment, and evaluating treatment responses. However, using the standardized uptake value (SUV) threshold with PET imaging may be suitable not to determine gross tumour volume but to determine biological target volume (BTV). The aim of this study was to extract internal target volume of BTV from PET images. Three spherical densities of 18F-FDG were employed in a phantom with an air or water background with repetitive motion amplitudes of 0–30 mm. The PET data were reconstructed with attenuation correction (AC) based on CT images obtained by slow CT scanning (SCS) or helical CT scanning (HCS). The errors in measured SUVmax and volumes calculated using SUV threshold values based on SUVmax (THmax) in experiments performed with varying extents of respiratory motion and AC were analysed. A partial volume effect (PVE) was not observed in spheres with diameters of ≥ 28 mm. When calculating SUVmax and THmax, using SCS for AC yielded smaller variance than using HCS (p < 0.05). For spheres of 37- and 28-mm diameters in the phantom with either an air or water background, significant differences were observed when mean THmax of 30-, 20-, or 10-mm amplitude were compared with the stationary conditions (p < 0.05). The average THmax values for 37-mm and 28-mm spheres with an air background were 0.362 and 0.352 in non-motion, respectively, and the mean THmax values for 37-mm and 28-mm spheres with a water background were 0.404 and 0.387 in non-motion and 0.244 and 0.263 in motion, respectively. When the phantom background was air, regardless of sphere concentration or size, THmax was dependent only on motion amplitude. We found that there was no PVE for spheres with ≥ 28-mm diameters, and differences between SUVmax and THmax were reduced by using SCS for AC. In the head-and-neck and the abdomen, the standard values of THmax were 0.25 and 0.40 with and without respiratory movement, respectively. In the lungs, the value of THmax became the approximate expression depending on motion amplitude.

155 citations

Journal ArticleDOI
TL;DR: Although no physics apart from the initial segmentation procedure enter the correction process, beam hardening artifacts were significantly reduced by EBHC and the image quality for clinical CT, micro-CT, and C-arm CT was highly improved.
Abstract: Purpose: Due to x-ray beam polychromaticity and scattered radiation, attenuation measurements tend to be underestimated. Cupping and beam hardening artifacts become apparent in the reconstructed CT images. If only one material such as water, for example, is present, these artifacts can be reduced by precorrecting the rawdata. Higher order beam hardening artifacts, as they result when a mixture of materials such as water and bone, or water and bone and iodine is present, require an iterative beam hardening correction where the image is segmented into different materials and those are forward projected to obtain new rawdata. Typically, the forward projection must correctly model the beam polychromaticity and account for all physical effects, including the energy dependence of the assumed materials in the patient, the detector response, and others. We propose a new algorithm that does not require any knowledge about spectra or attenuation coefficients and that does not need to be calibrated. The proposed method corrects beam hardening in single energy CT data. Methods: The only a priori knowledge entering EBHC is the segmentation of the object into different materials. Materials other than water are segmented from the original image, e.g., by using simple thresholding. Then, a (monochromatic) forward projectionmore » of these other materials is performed. The measured rawdata and the forward projected material-specific rawdata are monomially combined (e.g., multiplied or squared) and reconstructed to yield a set of correction volumes. These are then linearly combined and added to the original volume. The combination weights are determined to maximize the flatness of the new and corrected volume. EBHC is evaluated using data acquired with a modern cone-beam dual-source spiral CT scanner (Somatom Definition Flash, Siemens Healthcare, Forchheim, Germany), with a modern dual-source micro-CT scanner (TomoScope Synergy Twin, CT Imaging GmbH, Erlangen, Germany), and with a modern C-arm CT scanner (Axiom Artis dTA, Siemens Healthcare, Forchheim, Germany). A large variety of phantom, small animal, and patient data were used to demonstrate the data and system independence of EBHC. Results: Although no physics apart from the initial segmentation procedure enter the correction process, beam hardening artifacts were significantly reduced by EBHC. The image quality for clinical CT, micro-CT, and C-arm CT was highly improved. Only in the case of C-arm CT, where high scatter levels and calibration errors occur, the relative improvement was smaller. Conclusions: The empirical beam hardening correction is an interesting alternative to conventional iterative higher order beam hardening correction algorithms. It does not tend to over- or undercorrect the data. Apart from the segmentation step, EBHC does not require assumptions on the spectra or on the type of material involved. Potentially, it can therefore be applied to any CT image.« less

154 citations

Journal ArticleDOI
TL;DR: The accuracy of on-line correction of setup errors achievable using either kV- or MV-localization (i.e., open-field) radiographs was studied to study the difference in image quality between the traditional kilovoltage (kV) prescription radiographs and megavoltage treatment radiographs, and found that interobserver alignment variability was larger when using MV images than kV.
Abstract: Purpose: We hypothesize that the difference in image quality between the traditional kilovoltage (kV) prescription radiographs and megavoltage (MV) treatment radiographs is a major factor hindering our ability to accurately measure, thus correct, setup error in radiation therapy. The objective of this work is to study the accuracy of on-line correction of setup errors achievable using either kV- or MV-localization (i.e., open-field) radiographs. Methods and Materials: Using a gantry mounted kV and MV dual-beam imaging system, the accuracy of on-line measurement and correction of setup error using electronic kV- and MV-localization images was examined based on anthropomorphic phantom and patient imaging studies. For the phantom study, the user’s ability to accurately detect known translational shifts was analyzed. The clinical study included 14 patients with disease in the head and neck, thoracic, and pelvic regions. For each patient, 4 orthogonal kV radiographs acquired during treatment simulation from the right lateral, anterior-to-posterior, left lateral, and posterior-to-anterior directions were employed as reference prescription images. Two-dimensional (2D) anatomic templates were defined on each of the 4 reference images. On each treatment day, after positioning the patient for treatment, 4 orthogonal electronic localization images were acquired with both kV and 6-MV photon beams. On alternate weeks, setup errors were determined from either the kV- or MV-localization images but not both. Setup error was determined by aligning each 2D template with the anatomic information on the corresponding localization image, ignoring rotational and nonrigid variations. For each set of 4 orthogonal images, the results from template alignments were averaged. Based on the results from the phantom study and a parallel study of the inter- and intraobserver template alignment variability, a threshold for minimum correction was set at 2 mm in any direction. Setup correction was applied by translating the treatment couch in the lateral, superior-to-inferior and vertical directions only. During treatment, kV open-field images were acquired for off-line treatment verification and analysis. Each patient study spanned 2–6 weeks. The 14 patient studies were completed with 8248 electronic images acquired and analyzed. Results: Results from the phantom studies showed that the users were able to detect the applied translational shift to better than 2 mm, and mostly to within 1 mm. The intraobserver variability of template alignment was on the order of 1 mm using a sample of either MV or kV patient images. The difference between using MV or kV images was significant for only a few cases. However in most cases, interobserver alignment variability was larger when using MV images than kV. For on-line setup correction, the study procedure added 10 min. to conventional treatment time. Setup variation measured with either kV- or MV-localization images was similar. The initial magnitude of setup error was appreciable, with a mean displacement of about 6.6 ± 2.4 mm for the 14 patients. On-line correction using either kV- or MV-localization images improved setup accuracy. Over all study patients, setup errors occurred with standard deviations greater than 2 mm in any direction with a frequency of 48% before correction, and were reduced to 16% after correction. On average, kV image-based correction reduced radial setup variation to 2.6 ± 1.6 mm compared to the 3.3 ± 1.8 mm attained using MV images. The difference detected between the kV and MV data was not statistically significant when averaged over all patients. However, for on-line corrections in the neck and thoracic regions, using kV-localization images reduced setup error significantly more than using MV images. Conclusions: In our anatomic template alignment study, interobserver variability was smaller using kV images than MV images. Intraobserver variability was smaller for alignments on kV images than MV images for a few cases. On-line correction improved patient setup accuracy. Kilovoltage image-based corrections were qualitatively more effective than MV image-based corrections, but results were site dependent. We posit that the largely indifferent results using kV and MV images were due primarily to the prevalence of rotational and nonrigid setup variations, which were not addressed with our limited model of setup error. Nevertheless, the use of a kV beam offers the significant advantage of low imaging dose that will greatly enhance the potential for more frequent on-line correction.

154 citations

Journal ArticleDOI
TL;DR: Adaptive section collimation allows substantial reduction of unnecessary exposure owing to z-overscanning in spiral CT and can be combined in synergy with other means of dose reduction, such as spectral optimization and automatic exposure control.
Abstract: Purpose: To evaluate the potential effectiveness of adaptive collimation in reducing computed tomographic (CT) radiation dose owing to z-overscanning by using dose measurements and Monte Carlo (MC) dose simulations. Materials and Methods: Institutional review board approval was not necessary. Dose profiles were measured with thermoluminescent dosimeters in CT dose index phantoms and in an Alderson-Rando phantom without and with adaptive section collimation for spiral cardiac and chest CT protocols and were compared with the MC simulated dose profiles. Additional dose measurements were performed with an ionization chamber for scan ranges of 5–50 cm and pitch factors of 0.5–1.5. Results: The measured and simulated dose profiles agreed to within 3%. By using adaptive section collimation, a substantial dose reduction of up to 10% was achieved for cardiac and chest CT when measurements were performed free in air and of 7% on average when measurements were performed in phantoms. For scan ranges smaller than 12 ...

154 citations

Journal ArticleDOI
TL;DR: The paper gives an introduction to current medical ultrasound imaging systems, including systems using both linear and non-linear propagation of ultrasound, and the basics of anatomic and blood flow imaging.
Abstract: The paper gives an introduction to current medical ultrasound imaging systems. The basics of anatomic and blood flow imaging are described. The properties of medical ultrasound and its focusing are described, and the various methods for two- and three-dimensional imaging of the human anatomy are shown. Systems using both linear and non-linear propagation of ultrasound are described. The blood velocity can also be non-invasively visualized using ultrasound and the basic signal processing for doing this is introduced. Examples for spectral velocity estimation, color flow imaging and the new vector velocity images are presented.

154 citations


Network Information
Related Topics (5)
Iterative reconstruction
41.2K papers, 841.1K citations
89% related
Image quality
52.7K papers, 787.9K citations
88% related
Positron emission tomography
19.9K papers, 555.2K citations
82% related
Image resolution
38.7K papers, 736.5K citations
82% related
Detector
146.5K papers, 1.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,623
20223,476
20211,221
20201,482
20191,568
20181,503