scispace - formally typeset
Search or ask a question
Topic

Imaging phantom

About: Imaging phantom is a research topic. Over the lifetime, 28170 publications have been published within this topic receiving 510003 citations. The topic is also known as: phantom.


Papers
More filters
Journal ArticleDOI
TL;DR: This study demonstrates subsecond 3D high intensity focused ultrasound‐beam steering under magnetic resonance‐guidance for the real‐time compensation of respiratory motion and shows that for update frequencies of more than 10 Hz and latencies of less then 114 msec, temperature elevations can be achieved, which are comparable to static experiments.
Abstract: Magnetic resonance imaging-guided high intensity focused ultrasound is a promising method for the noninvasive ablation of pathological tissue in abdominal organs such as liver and kidney. Due to the high perfusion rates of these organs, sustained sonications are required to achieve a sufficiently high temperature elevation to induce necrosis. However, the constant displacement of the target due to the respiratory cycle render continuous ablations challenging, since dynamic repositioning of the focal point is required. This study demonstrates subsecond 3D high intensity focused ultrasound-beam steering under magnetic resonance-guidance for the real-time compensation of respiratory motion. The target is observed in 3D space by coupling rapid 2D magnetic resonance-imaging with prospective slice tracking based on pencil-beam navigator echoes. The magnetic resonance-data is processed in real-time by a computationally efficient reconstruction pipeline, which provides the position, the temperature and the thermal dose on-the-fly, and which feeds corrections into the high intensity focused ultrasound-ablator. The effect of the residual update latency is reduced by using a 3D Kalman-predictor for trajectory anticipation. The suggested method is characterized with phantom experiments and verified in vivo on porcine kidney. The results show that for update frequencies of more than 10 Hz and latencies of less then 114 msec, temperature elevations can be achieved, which are comparable to static experiments.

129 citations

Journal ArticleDOI
TL;DR: Human observer performance on a 2AFC lesion detection task in CT with a uniform background can be accurately predicted by a channelized Hotelling observer at different radiation dose levels and for both FBP and IR methods.
Abstract: Purpose: Efficient optimization of CT protocols demands a quantitative approach to predicting human observer performance on specific tasks at various scan and reconstruction settings. The goal of this work was to investigate how well a channelized Hotelling observer (CHO) can predict human observer performance on 2-alternative forced choice (2AFC) lesion-detection tasks at various dose levels and two different reconstruction algorithms: a filtered-backprojection (FBP) and an iterative reconstruction (IR) method. Methods: A 35 × 26 cm2 torso-shaped phantom filled with water was used to simulate an average-sized patient. Three rods with different diameters (small: 3 mm; medium: 5 mm; large: 9 mm) were placed in the center region of the phantom to simulate small, medium, and large lesions. The contrast relative to background was −15 HU at 120 kV. The phantom was scanned 100 times using automatic exposure control each at 60, 120, 240, 360, and 480 quality reference mAs on a 128-slice scanner. After removing the three rods, the water phantom was again scanned 100 times to provide signal-absent background images at the exact same locations. By extracting regions of interest around the three rods and on the signal-absent images, the authors generated 21 2AFC studies. Each 2AFC study had 100 trials, with each trial consisting of a signal-present image and a signal-absent image side-by-side in randomized order. In total, 2100 trials were presented to both the model and human observers. Four medical physicists acted as human observers. For the model observer, the authors used a CHO with Gabor channels, which involves six channel passbands, five orientations, and two phases, leading to a total of 60 channels. The performance predicted by the CHO was compared with that obtained by four medical physicists at each 2AFC study. Results: The human and model observers were highly correlated at each dose level for each lesion size for both FBP and IR. The Pearson's product-moment correlation coefficients were 0.986 [95% confidence interval (CI): 0.958–0.996] for FBP and 0.985 (95% CI: 0.863–0.998) for IR. Bland-Altman plots showed excellent agreement for all dose levels and lesions sizes with a mean absolute difference of 1.0% ± 1.1% for FBP and 2.1% ± 3.3% for IR. Conclusions: Human observer performance on a 2AFC lesion detection task in CT with a uniform background can be accurately predicted by a CHO model observer at different radiation dose levels and for both FBP and IR methods.

129 citations

Journal ArticleDOI
TL;DR: A robotic device for precise needle insertion during MR-guided therapy of spinal diseases and the required accuracy of approximately 1 mm being achieved and no significant artifacts being caused by the robotic device during MR image acquisition are presented.
Abstract: Objective: A variety of medical robots have been developed in recent years. MRI, including MR angiography and morphological imaging, with its excellent soft-tissue contrast is attractive for the development of interventional MRI-guided therapies and operations. This paper presents a telerobotic device for use in CT- and/or MR-guided radiological interventions. A robotic device for precise needle insertion during MR-guided therapy of spinal diseases will be briefly described.Materials and Methods: Actuation of robots in an MRI environment is difficult due to the presence of strong magnetic fields. Therefore, the robot was constructed of nonmagnetic materials. The system frame was built from polyether ether ketone (PEEK) and fiber-reinforced epoxy, and actuated using ultrasonic and pneumatic motors. Completely MR-compatible sensors were developed for positioning control.Results: Accuracy evaluation procedures and phantom tests were performed, with the required accuracy of approximately 1 mm being achieved a...

129 citations

Journal ArticleDOI
TL;DR: This paper describes a fast convolution-based methodology for simulating ultrasound images in a 2-D/3-D sector format as typically used in cardiac ultrasound and shows that COLE can produce anatomically plausible images with local Rayleigh statistics but at improved calculation time (1200 times faster than the reference method).
Abstract: This paper describes a fast convolution-based methodology for simulating ultrasound images in a 2-D/3-D sector format as typically used in cardiac ultrasound. The conventional convolution model is based on the assumption of a space-invariant point spread function (PSF) and typically results in linear images. These characteristics are not representative for cardiac data sets. The spatial impulse response method (IRM) has excellent accuracy in the linear domain; however, calculation time can become an issue when scatterer numbers become significant and when 3-D volumetric data sets need to be computed. As a solution to these problems, the current manuscript proposes a new convolution-based methodology in which the data sets are produced by reducing the conventional 2-D/3-D convolution model to multiple 1-D convolutions (one for each image line). As an example, simulated 2-D/3-D phantom images are presented along with their gray scale histogram statistics. In addition, the computation time is recorded and contrasted to a commonly used implementation of IRM (Field II). It is shown that COLE can produce anatomically plausible images with local Rayleigh statistics but at improved calculation time (1200 times faster than the reference method).

128 citations

Journal ArticleDOI
TL;DR: Using the high ensemble vector Doppler technique, blood flow through stenoses and secondary flow patterns were better visualized than in ordinary color doppler, and the full velocity spectrum could be obtained retrospectively for arbitrary points in the image.
Abstract: A quantitative angle-independent 2-D modality for flow and tissue imaging based on multi-angle plane wave acquisition was evaluated. Simulations of realistic flow in a carotid artery bifurcation were used to assess the accuracy of the vector Doppler (VD) technique. Reduction in root mean square deviation from 27 cm/s to 6 cm/s and 7 cm/s to 2 cm/s was found for the lateral (vx) and axial (vz) velocity components, respectively, when the ensemble size was increased from 8 to 50. Simulations of a Couette flow phantom (vmax = 2.7 cm/s) gave promising results for imaging of slowly moving tissue, with root mean square deviation of 4.4 mm/s and 1.6 mm/s for the x- and z-components, respectively. A packet acquisition scheme providing both B-mode and vector Doppler RF data was implemented on a research scanner, and beamforming and further post-processing was done offline. In vivo results of healthy volunteers were in accordance with simulations and gave promising results for flow and tissue vector velocity imaging. The technique was also tested in patients with carotid artery disease. Using the high ensemble vector Doppler technique, blood flow through stenoses and secondary flow patterns were better visualized than in ordinary color Doppler. Additionally, the full velocity spectrum could be obtained retrospectively for arbitrary points in the image.

128 citations


Network Information
Related Topics (5)
Iterative reconstruction
41.2K papers, 841.1K citations
89% related
Image quality
52.7K papers, 787.9K citations
88% related
Positron emission tomography
19.9K papers, 555.2K citations
82% related
Image resolution
38.7K papers, 736.5K citations
82% related
Detector
146.5K papers, 1.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,623
20223,476
20211,221
20201,482
20191,568
20181,503