scispace - formally typeset
Search or ask a question
Topic

Imaging phantom

About: Imaging phantom is a research topic. Over the lifetime, 28170 publications have been published within this topic receiving 510003 citations. The topic is also known as: phantom.


Papers
More filters
Journal ArticleDOI
TL;DR: The experimental results indicate that PAI in a noncontact detection mode is possible with high resolution and high bandwidth, and lends itself to a natural integration of PAI with OCT, rather than a combination of two separate and independent systems.
Abstract: We report on a noncontact photoacoustic imaging (PAI) technique in which a low-coherence interferometer [(LCI), optical coherence tomography (OCT) hardware] is utilized as the acoustic detector. A synchronization approach is used to lock the LCI system at its highly sensitive region for photoacoustic detection. The technique is experimentally verified by the imaging of a scattering phantom embedded with hairs and the blood vessels within a mouse ear in vitro. The system’s axial and lateral resolutions are evaluated at 60 and 30 μm, respectively. The experimental results indicate that PAI in a noncontact detection mode is possible with high resolution and high bandwidth. The proposed approach lends itself to a natural integration of PAI with OCT, rather than a combination of two separate and independent systems.

101 citations

Journal ArticleDOI
TL;DR: A small-animal PET system using SiPMs and lutetium gadolinium oxyorthosilicate (LGSO) crystals is developed and shown to be feasible, which yielded reasonable PET performance in phantom and animal studies.
Abstract: Silicon photomultiplier (SiPM; also called a Geiger-mode avalanche photodiode) is a promising semiconductor photosensor in PET and PET/MRI because it is intrinsically MRI-compatible and has internal gain and timing properties comparable to those of a photomultiplier tube. In this study, we have developed a small-animal PET system using SiPMs and lutetium gadolinium oxyorthosilicate (LGSO) crystals and performed physical evaluation and animal imaging studies to show the feasibility of this system. Methods: The SiPM PET system consists of 8 detectors, each of which comprises 2 × 6 SiPMs and 4 × 13 LGSO crystals. Each crystal has dimensions of 1.5 × 1.5 × 7 mm. The crystal face-to-face diameter and axial field of view are 6.0 cm and 6.5 mm, respectively. Bias voltage is applied to each SiPM using a finely controlled voltage supply because the gain of the SiPM strongly depends on the supply voltage. The physical characteristics were studied by measuring energy resolution, sensitivity, and spatial resolution. Various mouse and rat images were obtained to study the feasibility of the SiPM PET system in in vivo animal studies. Reconstructed PET images using a maximum-likelihood expectation maximization algorithm were coregistered with animal CT images. Results: All individual LGSO crystals within the detectors were clearly distinguishable in flood images obtained by irradiating the detector using a 22Na point source. The energy resolution for individual crystals was 25.8% ± 2.6% on average for 511-keV photopeaks. The spatial resolution measured with the 22Na point source in a warm background was 1.0 mm (2 mm off-center) and 1.4 mm (16 mm off-center) when the maximum-likelihood expectation maximization algorithm was applied. A myocardial 18F-FDG study in mice and a skeletal 18F study in rats demonstrated the fine spatial resolution of the scanner. The feasibility of the SiPM PET system was also confirmed in the tumor images of mice using 18F-FDG and 68Ga-RGD and in the brain images of rats using 18F-FDG. Conclusion: These results indicate that it is possible to develop a PET system using a promising semiconductor photosensor, which yielded reasonable PET performance in phantom and animal studies.

101 citations

Journal ArticleDOI
L. Roelens1, S. Van den Bulcke1, Wout Joseph1, Günter Vermeeren1, Luc Martens1 
TL;DR: In this article, a new empirical path loss model for wireless communication at 24 GHz above a flat, lossy medium, representing human tissue, was presented, which is valid for dipole antennas for heights up to 5 cm above the phantom and for distances up to 40 cm.
Abstract: A new empirical path loss model for wireless communication at 24 GHz above a flat, lossy medium, representing human tissue, is presented The model is valid for dipole antennas for heights up to 5 cm above the phantom and for distances up to 40 cm, and was applied to muscle and brain simulating media For antennas placed close to the lossy medium, it was found that antenna height has a major influence on path loss The model has been validated by measurements and simulations, which show excellent agreement

101 citations

Journal ArticleDOI
TL;DR: Simulations revealed that minimum-norm least-squares image reconstruction can result in a drastic decrease of artifacts compared with regridding-based reconstruction, and both in vivo and phantom experiments showed thatMinimum-norm most-squared image reconstruction leads to contrast improvement and increased signal-to-noise ratio compared with image reconstruction based on regridd.
Abstract: A minimum-norm least-squares image-reconstruction method for the reconstruction of magnetic resonance images from non-Cartesian sampled data is proposed. The method is based on a general formalism for continuous-to-discrete mapping and pseudoinverse calculation. It does not involve any regridding or interpolation of the data and therefore the methodology differs fundamentally from existing regridding-based methods. Moreover, the method uses a continuous representation of objects in the image domain instead of a discretized representation. Simulations and experiments show the possibilities of the method in both radial and spiral imaging. Simulations revealed that minimum-norm least-squares image reconstruction can result in a drastic decrease of artifacts compared with regridding-based reconstruction. Besides, both in vivo and phantom experiments showed that minimum-norm least-squares image reconstruction leads to contrast improvement and increased signal-to-noise ratio compared with image reconstruction based on regridding. As an appendix, an analytical calculation of the raw data corresponding to the well-known Shepp and Logan software head phantom is presented.

101 citations

Journal Article
TL;DR: In this paper, a general method for patient-specific 3D absorbed dose calculations based on quantitative SPECT activity measurements is presented, which includes a method for registration of the CT image to the SPECT image and position-dependent compensation for attenuation, scatter, and collimator detector response performed as part of an iterative reconstruction method.
Abstract: A general method is presented for patient-specific 3-dimensional absorbed dose calculations based on quantitative SPECT activity measurements. Methods: The computational scheme includes a method for registration of the CT image to the SPECT image and position-dependent compensation for attenuation, scatter, and collimator detector response performed as part of an iterative reconstruction method. A method for conversion of the measured activity distribution to a 3-dimensional absorbed dose distribution, based on the EGS4 (electron-gamma shower, version 4) Monte Carlo code, is also included. The accuracy of the activity quantification and the absorbed dose calculation is evaluated on the basis of realistic Monte Carlo-simulated SPECT data, using the SIMIND (simulation of imaging nuclear detectors) program and a voxel-based computer phantom. CT images are obtained from the computer phantom, and realistic patient movements are added relative to the SPECT image. The SPECT-based activity concentration and absorbed dose distributions are compared with the true ones. Results: Correction could be made for object scatter, photon attenuation, and scatter penetration in the collimator. However, inaccuracies were imposed by the limited spatial resolution of the SPECT system, for which the collimator response correction did not fully compensate. Conclusion: The presented method includes compensation for most parameters degrading the quantitative image information. The compensation methods are based on physical models and therefore are generally applicable to other radionuclides. The proposed evaluation methodology may be used as a basis for future intercomparison of different methods.

101 citations


Network Information
Related Topics (5)
Iterative reconstruction
41.2K papers, 841.1K citations
89% related
Image quality
52.7K papers, 787.9K citations
88% related
Positron emission tomography
19.9K papers, 555.2K citations
82% related
Image resolution
38.7K papers, 736.5K citations
82% related
Detector
146.5K papers, 1.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,623
20223,476
20211,221
20201,482
20191,568
20181,503