scispace - formally typeset
Search or ask a question
Topic

Imaging phantom

About: Imaging phantom is a research topic. Over the lifetime, 28170 publications have been published within this topic receiving 510003 citations. The topic is also known as: phantom.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that the accelerated demons algorithm has significant potential for delineating and tracking doses in targets and critical structures during CT-guided radiotherapy.
Abstract: A greyscale-based fully automatic deformable image registration algorithm, originally known as the 'demons' algorithm, was implemented for CT image-guided radiotherapy. We accelerated the algorithm by introducing an 'active force' along with an adaptive force strength adjustment during the iterative process. These improvements led to a 40% speed improvement over the original algorithm and a high tolerance of large organ deformations. We used three methods to evaluate the accuracy of the algorithm. First, we created a set of mathematical transformations for a series of patient's CT images. This provides a 'ground truth' solution for quantitatively validating the deformable image registration algorithm. Second, we used a physically deformable pelvic phantom, which can measure deformed objects under different conditions. The results of these two tests allowed us to quantify the accuracy of the deformable registration. Validation results showed that more than 96% of the voxels were within 2 mm of their intended shifts for a prostate and a head-and-neck patient case. The mean errors and standard deviations were 0.5 mm+/-1.5 mm and 0.2 mm+/-0.6 mm, respectively. Using the deformable pelvis phantom, the result showed a tracking accuracy of better than 1.5 mm for 23 seeds implanted in a phantom prostate that was deformed by inflation of a rectal balloon. Third, physician-drawn contours outlining the tumour volumes and certain anatomical structures in the original CT images were deformed along with the CT images acquired during subsequent treatments or during a different respiratory phase for a lung cancer case. Visual inspection of the positions and shapes of these deformed contours agreed well with human judgment. Together, these results suggest that the accelerated demons algorithm has significant potential for delineating and tracking doses in targets and critical structures during CT-guided radiotherapy.

646 citations

Journal ArticleDOI
TL;DR: A novel technique called Prospective Acquisition CorrEction (PACE) for reducing motion‐induced effects on magnetization history is described and they showed a significant decrease of variance between successively acquired datasets compared to retrospective correction algorithms.
Abstract: In functional magnetic resonance imaging (fMRI) head motion can corrupt the signal changes induced by brain activation. This paper describes a novel technique called Prospective Acquisition CorrEction (PACE) for reducing motion-induced effects on magnetization history. Full three-dimensional rigid body estimation of head movement is obtained by image-based motion detection to a high level of accuracy. Adjustment of slice position and orientation, as well as regridding of residual volume to volume motion, is performed in real-time during data acquisition. Phantom experiments demonstrate a high level of consistency (translation < 40 microm; rotation < 0.05 degrees ) for detected motion parameters. In vivo experiments were carried out and they showed a significant decrease of variance between successively acquired datasets compared to retrospective correction algorithms.

644 citations

Journal ArticleDOI
TL;DR: A bayesian regularization approach that adds spatial priors from the MR magnitude image is formulated for susceptibility imaging, introducing a new quantitative contrast in MRI that is directly linked to iron in the brain.
Abstract: The diagnosis of many neurologic diseases benefits from the ability to quantitatively assess iron in the brain. Paramagnetic iron modifies the magnetic susceptibility causing magnetic field inhomogeneity in MRI. The local field can be mapped using the MR signal phase, which is discarded in a typical image reconstruction. The calculation of the susceptibility from the measured magnetic field is an ill-posed inverse problem. In this work, a bayesian regularization approach that adds spatial priors from the MR magnitude image is formulated for susceptibility imaging. Priors include background regions of known zero susceptibility and edge information from the magnitude image. Simulation and phantom validation experiments demonstrated accurate susceptibility maps free of artifacts. The ability to characterize iron content in brain hemorrhage was demonstrated on patients with cavernous hemangioma. Additionally, multiple structures within the brain can be clearly visualized and characterized. The technique introduces a new quantitative contrast in MRI that is directly linked to iron in the brain.

639 citations

Journal ArticleDOI
TL;DR: An alternative respiratory correlated CBCT procedure is developed that reduces respiration induced geometrical uncertainties, enabling safe delivery of 4D radiotherapy such as gated radiotherapy with small margins.
Abstract: A cone beam computed tomography (CBCT) scanner integrated with a linear accelerator is a powerful tool for image guided radiotherapy. Respiratory motion, however, induces artifacts in CBCT, while the respiratory correlated procedures, developed to reduce motion artifacts in axial and helical CT are not suitable for such CBCT scanners. We have developed an alternative respiratory correlated procedure for CBCT and evaluated its performance. This respiratory correlated CBCT procedure consists of retrospective sorting in projection space, yielding subsets of projections that each corresponds to a certain breathing phase. Subsequently, these subsets are reconstructed into a four-dimensional (4D) CBCT dataset. The breathing signal, required for respiratory correlation, was directly extracted from the 2D projection data, removing the need for an additional respiratory monitor system. Due to the reduced number of projections per phase, the contrast-to-noise ratio in a 4D scan reduced by a factor 2.6-3.7 compared to a 3D scan based on all projections. Projection data of a spherical phantom moving with a 3 and 5 s period with and without simulated breathing irregularities were acquired and reconstructed into 3D and 4D CBCT datasets. The positional deviations of the phantoms center of gravity between 4D CBCT and fluoroscopy were small: 0.13 +/- 0.09 mm for the regular motion and 0.39 +/- 0.24 mm for the irregular motion. Motion artifacts, clearly present in the 3D CBCT datasets, were substantially reduced in the 4D datasets, even in the presence of breathing irregularities, such that the shape of the moving structures could be identified more accurately. Moreover, the 4D CBCT dataset provided information on the 3D trajectory of the moving structures, absent in the 3D data. Considerable breathing irregularities, however, substantially reduces the image quality. Data presented for three different lung cancer patients were in line with the results obtained from the phantom study. In conclusion, we have successfully implemented a respiratory correlated CBCT procedure yielding a 4D dataset. With respiratory correlated CBCT on a linear accelerator, the mean position, trajectory, and shape of a moving tumor can be verified just prior to treatment. Such verification reduces respiration induced geometrical uncertainties, enabling safe delivery of 4D radiotherapy such as gated radiotherapy with small margins.

639 citations

Journal Article
TL;DR: The Gemini TF whole-body scanner represents the first commercially available fully 3-dimensional PET scanner that achieves time-of-flight capability as well as conventional imaging capabilities.
Abstract: Results from a new PET/CT scanner using lutetium-yttrium oxyorthosilicate (LYSO) crystals for the PET component are presented. This scanner, which operates in a fully 3-dimensional mode, has a diameter of 90 cm and an axial field of view of 18 cm. It uses 4 × 4 × 22 mm3 LYSO crystals arranged in a pixelated Anger-logic detector design. This scanner was designed to perform as a high-performance conventional PET scanner as well as provide good timing resolution to operate as a time-of-flight (TOF) PET scanner. Methods: Performance measurements on the scanner were made using the National Electrical Manufacturers Association (NEMA) NU2-2001 procedures to benchmark its conventional imaging capabilities. The scatter fraction and noise equivalent count (NEC) measurements with the NEMA cylinder (20-cm diameter) were repeated for 2 larger cylinders (27-cm and 35-cm diameter), which better represent average and heavy patients. New measurements were designed to characterize its intrinsic timing resolution capability, which defines its TOF performance. Additional measurements to study the impact of pulse pileup at high counting rates on timing, as well as energy and spatial, resolution were also performed. Finally, to characterize the effect of TOF reconstruction on lesion contrast and noise, the standard NEMA/International Electrotechnical Commission torso phantom as well as a large 35-cm-diameter phantom with both hot and cold spheres were imaged for varying scan times. Results: The transverse and axial resolution near the center is 4.8 mm. The absolute sensitivity of this scanner measured with a 70-cm-long line source is 6.6 cps/kBq, whereas scatter fraction is 27% measured with a 70-cm-long line source in a 20-cm-diameter cylinder. For the same line source cylinder, the peak NEC rate is measured to be 125 kcps at an activity concentration of 17.4 kBq/mL (0.47 μCi/mL). The 2 larger cylinders showed a decrease in the peak NEC due to increased attenuation, scatter, and random coincidences, and the peak occurs at lower activity concentrations. The system coincidence timing resolution was measured to be 585 ps. The timing resolution changes as a function of the singles rate due to pulse pileup and could impact TOF image reconstruction. Image-quality measurements with the torso phantom show that very high quality images can be obtained with short scan times (1–2 min per bed position). However, the benefit of TOF is more apparent with the large 35-cm-diameter phantom, where small spheres are detectable only with TOF information for short scan times. Conclusion: The Gemini TF whole-body scanner represents the first commercially available fully 3-dimensional PET scanner that achieves TOF capability as well as conventional imaging capabilities. The timing resolution is also stable over a long duration, indicating the practicality of this device. Excellent image quality is achieved for whole-body studies in 10–30 min, depending on patient size. The most significant improvement with TOF is seen for the heaviest patients.

630 citations


Network Information
Related Topics (5)
Iterative reconstruction
41.2K papers, 841.1K citations
89% related
Image quality
52.7K papers, 787.9K citations
88% related
Positron emission tomography
19.9K papers, 555.2K citations
82% related
Image resolution
38.7K papers, 736.5K citations
82% related
Detector
146.5K papers, 1.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,623
20223,476
20211,221
20201,482
20191,568
20181,503