scispace - formally typeset
Search or ask a question
Topic

Imaging technology

About: Imaging technology is a research topic. Over the lifetime, 1450 publications have been published within this topic receiving 26186 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Application of microvascular tortuosity and spatial clustering techniques to clinical imaging could improve breast cancer diagnosis, as well as improve specificity in assessing cancer in other tissues.
Abstract: The purpose of this study is to determine if microvascular tortuosity can be used as an imaging biomarker for the presence of tumor-associated angiogenesis and if imaging this biomarker can be used as a specific and sensitive method of locating solid tumors. Acoustic angiography, an ultrasound-based microvascular imaging technology, was used to visualize angiogenesis development of a spontaneous mouse model of breast cancer ( ). A reader study was used to assess visual discrimination between image types, and quantitative methods utilized metrics of tortuosity and spatial clustering for tumor detection. The reader study resulted in an area under the curve of 0.8, while the clustering approach resulted in the best classification with an area under the curve of 0.95. Both the qualitative and quantitative methods produced a correlation between sensitivity and tumor diameter. Imaging of vascular geometry with acoustic angiography provides a robust method for discriminating between tumor and healthy tissue in a mouse model of breast cancer. Multiple methods of analysis have been presented for a wide range of tumor sizes. Application of these techniques to clinical imaging could improve breast cancer diagnosis, as well as improve specificity in assessing cancer in other tissues. The clustering approach may be beneficial for other types of morphological analysis beyond vascular ultrasound images.

8 citations

Proceedings ArticleDOI
TL;DR: A computational sensor design for high-resolution wide-angle imaging is presented by multiplexing multiple sub-fields-of-view onto a single image sensor using feature-specific imaging techniques.
Abstract: We present a computational sensor design for high-resolution wide-angle imaging by multiplexing multiple sub-fields-of-view onto a single image sensor using feature-specific imaging techniques.

8 citations

Journal ArticleDOI
TL;DR: In this article, 3D virtual planning together with 3D printing has been implemented through different approaches in 8 different upper extremity trauma cases, and the authors describe their specific challenges and management.
Abstract: Introduction Surgical planning relies on the use of images to develop an action plan prior to the actual surgical intervention. Imaging technology improvement together with the development of specific software to treat three dimensional images has increased the accuracy and capabilities of pre-surgical planning. In addition to this, 3D printing allows us to manufacture customized surgical tools to implement and aid in the success of surgeries. Material and Methods 3D virtual planning together with 3D printing has been implemented through different approaches in 8 different upper extremity trauma cases. We describe these 8 cases (2 women and 6 men with ages ranging from 16 to 67 years), their specific challenges and management. Results We show how 3D technology changes the conception, planning and execution of surgery in 8 different cases. In addition, we describe what challenges were faced as well as the various utilities of 3D technology beyond that of anatomical model printing. Conclusions The use of 3D technology has improved and enhanced surgical planning. It allows us to view and virtually manipulate fracture fragments prior to surgery. It also enables us to develop customized surgical tools and guides that can increase the accuracy of certain procedures, and help in the management of orthopaedic and trauma lesions. We believe that the use of this technology is beneficial to both the patient and surgeon, since it reduces surgical time and complications giving a better understanding of the injury and its treatment.

8 citations

Journal ArticleDOI
TL;DR: In this paper, an adaptive joint parametric estimation recovery algorithm based on the Tikhonov regularization method was proposed to update the target velocity and basis matrix adaptively and recover the target images synchronously.
Abstract: As a complementary imaging technology, coincidence imaging radar (CIR) achieves high resolution for stationary or low-speed targets under the assumption of ignoring the influence of the original position mismatching. As to high-speed moving targets moving from the original imaging cell to other imaging cells during imaging, it is inaccurate to reconstruct the target using the previous imaging plane. We focus on the recovery problem for high-speed moving targets in the CIR system based on the intrapulse frequency random modulation signal in a single pulse. The effects induced by the motion on the imaging performance are analyzed. Because the basis matrix in the CIR imaging equation is determined by the unknown velocity parameter of the moving target, both the target images and basis matrix should be estimated jointly. We propose an adaptive joint parametric estimation recovery algorithm based on the Tikhonov regularization method to update the target velocity and basis matrix adaptively and recover the target images synchronously. Finally, the target velocity and target images are obtained in an iterative manner. Simulation results are presented to demonstrate the efficiency of the proposed algorithm.

8 citations

Journal ArticleDOI
TL;DR: An unstructured review of published evidence of available pulmonary imaging technologies along with a demonstration of state-of-the-art OCT imaging technology of in vivo human and animal airways are presented.

8 citations


Network Information
Related Topics (5)
Image processing
229.9K papers, 3.5M citations
76% related
Magnetic resonance imaging
61K papers, 1.5M citations
75% related
Segmentation
63.2K papers, 1.2M citations
75% related
Pixel
136.5K papers, 1.5M citations
72% related
Image segmentation
79.6K papers, 1.8M citations
71% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202312
202224
202190
202091
201984
201879