scispace - formally typeset
Search or ask a question
Topic

Imaging technology

About: Imaging technology is a research topic. Over the lifetime, 1450 publications have been published within this topic receiving 26186 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The latest approaches to imaging of 5 common cancers: breast, lung, prostate, and colorectal cancers, and lymphoma are provided.
Abstract: Imaging has become a pivotal component throughout a patient's encounter with cancer, from initial disease detection and characterization through treatment response assessment and posttreatment follow-up. Recent progress in imaging technology has presented new opportunities for improving clinical care. This article provides updates on the latest approaches to imaging of 5 common cancers: breast, lung, prostate, and colorectal cancers, and lymphoma.

58 citations

Journal ArticleDOI
01 Nov 1999-Chest
TL;DR: Positron emission tomography provides an important new approach to the accurate detection and staging of chest malignancies and to the evaluation of pulmonary nodules and new digital imaging techniques, which are rapidly replacing conventional x-ray film, offer the possibility of computer-aided diagnosis.

58 citations

Journal ArticleDOI
TL;DR: Current state-of-the-art pulse sequence technology and its application to the evaluation of ischemic heart disease by means of MR tagging with dobutamine stress testing, MR perfusion imaging, and MR coronary angiography are reviewed.
Abstract: Important advances in rapid magnetic resonance (MR) imaging technology and its application to cardiovascular imaging have been made during the past decade. High-field-strength clinical magnets, high-performance gradient hardware, and ultrafast pulse sequence technology are rapidly making the vision of a comprehensive “one-stop shop” cardiac MR imaging examination a reality. This examination is poised to have a significant effect on the management of coronary artery disease by means of assessment of wall motion with tagging and pharmacologic stress testing, evaluation of the coronary microvasculature with perfusion imaging, and direct visualization of the coronary arteries with MR coronary angiography. This article reviews current state-of-the-art pulse sequence technology and its application to the evaluation of ischemic heart disease by means of MR tagging with dobutamine stress testing, MR perfusion imaging, and MR coronary angiography. Cutting edge areas of research in coil design and exciting new area...

58 citations

Journal ArticleDOI
Martin C. Nuss1
TL;DR: T-ray imaging combines these spectroscopic measurements with real-time imaging and advanced signal processing and recognition, so that each pixel element of the image contains spectroscopy information about the object as mentioned in this paper.
Abstract: What do you get if you combine very high frequency microwaves, real-time imaging, submillimeter spatial resolution, and chemical sensitivity? The answer is Terahertz, or "T"-ray, imaging. This novel imaging technology operates in the submillimeterwave region of the electro-magnetic spectrum, a portion of the spectrum that was previously hard to access using conventional technologies. But recent advances in high-speed optoelectronic and femtosecond laser technology facilitate generation and detection of short bursts of terahertz radiation, which have proven to be extremely useful for spectroscopic measurements in the submillimeter-wave range. T-ray imaging combines these spectroscopic measurements with real-time imaging and advanced signal processing and recognition, so that each pixel element of the image contains spectroscopic information about the object. In many cases, the spectroscopic information gives us significant clues about the chemical composition of the object of interest.

57 citations

Journal ArticleDOI
16 May 2020-Sensors
TL;DR: The fundamentals of the various strategies, that have been developed for applying this technique to different types of artworks are discussed, together with some examples of recent applications.
Abstract: Imaging spectroscopy technique was introduced in the cultural heritage field in the 1990s, when a multi-spectral imaging system based on a Vidicon camera was used to identify and map pigments in paintings. Since then, with continuous improvements in imaging technology, the quality of spectroscopic information in the acquired imaging data has greatly increased. Moreover, with the progressive transition from multispectral to hyperspectral imaging techniques, numerous new applicative perspectives have become possible, ranging from non-invasive monitoring to high-quality documentation, such as mapping and characterization of polychrome and multi-material surfaces of cultural properties. This article provides a brief overview of recent developments in the rapidly evolving applications of hyperspectral imaging in this field. The fundamentals of the various strategies, that have been developed for applying this technique to different types of artworks are discussed, together with some examples of recent applications.

57 citations


Network Information
Related Topics (5)
Image processing
229.9K papers, 3.5M citations
76% related
Magnetic resonance imaging
61K papers, 1.5M citations
75% related
Segmentation
63.2K papers, 1.2M citations
75% related
Pixel
136.5K papers, 1.5M citations
72% related
Image segmentation
79.6K papers, 1.8M citations
71% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202312
202224
202190
202091
201984
201879