scispace - formally typeset
Search or ask a question
Topic

Imaging technology

About: Imaging technology is a research topic. Over the lifetime, 1450 publications have been published within this topic receiving 26186 citations.


Papers
More filters
03 May 2017
TL;DR: A portable IVPA-US system capable of imaging at up to 25 frames per second in real-time display mode is demonstrated, presenting significant advances in the translational intravascular and other endoscopic applications.
Abstract: Intravascular photoacoustic-ultrasound (IVPA-US) imaging is an emerging hybrid modality for the detection of lipid-laden plaques, as it provides simultaneous morphological and lipid-specific chemical information of an artery wall. Real-time imaging and display at video-rate speed are critical for clinical utility of the IVPA-US imaging technology. Here, we demonstrate a portable IVPA-US system capable of imaging at up to 25 frames per second in real-time display mode. This unprecedented imaging speed was achieved by concurrent innovations in excitation laser source, rotary joint assembly, 1 mm IVPA-US catheter size, differentiated A-line strategy, and real-time image processing and display algorithms. Spatial resolution, chemical specificity, and capability for imaging highly dynamic objects were evaluated by phantoms to characterize system performance. An imaging speed of 16 frames per second was determined to be adequate to suppress motion artifacts from cardiac pulsation for in vivo applications. The translational capability of this system for the detection of lipid-laden plaques was validated by ex vivo imaging of an atherosclerotic human coronary artery at 16 frames per second, which showed strong correlation to gold-standard histopathology. Thus, this high-speed IVPA-US imaging system presents significant advances in the translational intravascular and other endoscopic applications.

48 citations

Journal ArticleDOI
TL;DR: Despite the advances in anterior chamber imaging technology, there is still the need for a clinical, high-resolution, true anatomical, noninvasive technique to image behind the peripheral iris.
Abstract: PURPOSE OF REVIEW: Imaging of the crystalline lens and intraocular lens is becoming increasingly more important to optimize the refractive outcome of cataract surgery, to detect and manage complications and to ascertain advanced intraocular lens performance. This review examines recent advances in anterior segment imaging. RECENT FINDINGS: The main techniques used for imaging the anterior segment are slit-lamp biomicroscopy, ultrasound biomicroscopy, scheimpflug imaging, phakometry, optical coherence tomography and magnetic resonance imaging. They have principally been applied to the assessment of intraocular lens centration, tilt, position relative to the iris and movement with ciliary body contraction. SUMMARY: Despite the advances in anterior chamber imaging technology, there is still the need for a clinical, high-resolution, true anatomical, noninvasive technique to image behind the peripheral iris. © 2007 Lippincott Williams & Wilkins, Inc.

48 citations

Journal ArticleDOI
TL;DR: This overview summarizes recent progresses in digital microscopy imaging and newly developed digital slide techniques and recommends that toxicologic pathologists embrace and utilize these technologies as advances occur.
Abstract: Modern imaging technology, now utilized in most biomedical research areas (bioimaging), enables the detection and visualization of biological processes at various levels of the molecule, organelle, cell, tissue, organ and/or whole body. In toxicologic pathology, the impact of modern imaging technology is becoming apparent from digital histopathology to novel molecular imaging for in vivo studies. This overview summarizes recent progresses in digital microscopy imaging and newly developed digital slide techniques. Applications of virtual microscopy imaging are discussed and compared to traditional optical microscopy reading. New generation digital pathology approaches, including automatic slide inspection, digital slide databases and image management are briefly introduced. Commonly used in vivo preclinical imaging technologies are also summarized. While most of these new imaging techniques are still undergoing rapid development, it is important that toxicologic pathologists embrace and utilize these technologies as advances occur.

48 citations

Journal ArticleDOI
TL;DR: The application of 3D stereo-imaging technology to the medical field will help improve surgical accuracy, reduce operation times, and enhance patient safety, and it is important to develop more enhanced stereoscopic medical devices.
Abstract: Objectives There has been continuous development in the area of stereoscopic medical imaging devices, and many stereoscopic imaging devices have been realized and applied in the medical field. In this article, we review past and current trends pertaining to the application stereo-imaging technologies in the medical field. Methods We describe the basic principles of stereo vision and visual issues related to it, including visual discomfort, binocular disparities, vergence-accommodation mismatch, and visual fatigue. We also present a brief history of medical applications of stereo-imaging techniques, examples of recently developed stereoscopic medical devices, and patent application trends as they pertain to stereo-imaging medical devices. Results Three-dimensional (3D) stereo-imaging technology can provide more realistic depth perception to the viewer than conventional two-dimensional imaging technology. Therefore, it allows for a more accurate understanding and analysis of the morphology of an object. Based on these advantages, the significance of stereoscopic imaging in the medical field increases in accordance with the increase in the number of laparoscopic surgeries, and stereo-imaging technology plays a key role in the diagnoses of the detailed morphologies of small biological specimens. Conclusions The application of 3D stereo-imaging technology to the medical field will help improve surgical accuracy, reduce operation times, and enhance patient safety. Therefore, it is important to develop more enhanced stereoscopic medical devices.

47 citations

Proceedings ArticleDOI
F. Sauer1
01 Jan 2005
TL;DR: This work presents examples of both approaches from an application oriented perspective, covering electrophysiology, radiation therapy, and neuro-surgery, and concludes that as the boundaries between interventional radiology and surgery are becoming blurry, the different methods for image guidance will merge.
Abstract: Imaging looks inside the patient's body, exposing the patient's anatomy beyond what is visible on the surface. Medical imaging has a very successful history for medical diagnosis. It also plays an increasingly important role as enabling technology for minimally invasive procedures. Interventional procedures (e.g. catheter based cardiac interventions) are traditionally supported by intra-procedure imaging (X-ray fluoro, ultrasound). There is realtime feedback, but the images provide limited information. Surgical procedures are traditionally supported with pre-operative images (CT, MR). The image quality can be very good; however, the link between images and patient has been lost. For both cases, image registration can play an essential role -augmenting intra-op images with pre-op images, and mapping pre-op images to the patient's body. We will present examples of both approaches from an application oriented perspective, covering electrophysiology, radiation therapy, and neuro-surgery. Ultimately, as the boundaries between interventional radiology and surgery are becoming blurry, also the different methods for image guidance will merge. Image guidance will draw upon a combination of pre-op and intra-op imaging together with magnetic or optical tracking systems, and enable precise minimally invasive procedures. The information is registered into a common coordinate system, and allows advanced methods for visualization such as augmented reality or advanced methods for therapy delivery such as robotics

47 citations


Network Information
Related Topics (5)
Image processing
229.9K papers, 3.5M citations
76% related
Magnetic resonance imaging
61K papers, 1.5M citations
75% related
Segmentation
63.2K papers, 1.2M citations
75% related
Pixel
136.5K papers, 1.5M citations
72% related
Image segmentation
79.6K papers, 1.8M citations
71% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202312
202224
202190
202091
201984
201879