scispace - formally typeset
Search or ask a question
Topic

Immobilized enzyme

About: Immobilized enzyme is a research topic. Over the lifetime, 15282 publications have been published within this topic receiving 401860 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an electrochemical glucose sensor was integrated with a pH sensor on a flexible polyimide substrate for in vivo applications for short-term monitoring of glucose and pH in intensive care units and operating theatres, especially for neurosurgical applications.

201 citations

Journal ArticleDOI
TL;DR: It is believed that through the integration of both enzyme engineering and enzyme immobilization strategies, novel biocatalysts can be obtained, not only as the sum of independently improved intrinsic and operational properties of enzymes, but ultimately tailored specifically for increased performance as immobilized biocAtalysts.

201 citations

Journal ArticleDOI
TL;DR: The possibilities of a directed immobilization of mutated enzymes (change of an amino acid by cysteine on specific points of the protein surface) on tailor-made disulfide-epoxy supports will be discussed as an almost-ideal procedure to achieve very intense and very efficient rigidification of a desired region of industrial enzymes.
Abstract: Multipoint covalent immobilization of enzymes (through very short spacer arms) on support surfaces promotes a very interesting 'rigidification' of protein molecules. In this case, the relative positions of each residue of the enzyme involved in the immobilization process have to be preserved unchanged during any conformational change induced on the immobilized enzyme by any distorting agent (heat, organic solvents etc.). In this way, multipoint covalent immobilization should induce a very strong stabilization of immobilized enzymes. Epoxy-activated supports are able to chemically react with all nucleophile groups placed on the protein surface: lysine, histidine, cysteine, tyrosine etc. Besides, epoxy groups are very stable. This allows the performance of very long enzyme-support reactions, enabling us to get very intense multipoint covalent attachment. In this way, these epoxy supports seem to be very suitable to stabilize industrial enzymes by multipoint covalent attachment. However, epoxy groups exhibit a low intermolecular reactivity towards nucleophiles and hence the enzymes are not able to directly react with the epoxy supports. Thus a rapid physical adsorption of enzymes on the supports becomes a first step, followed by an additional rapid 'intramolecular' reaction between the already adsorbed enzyme and the activated support. In this situation, a suitable first orientation of the enzyme on the support (e.g. through regions that are very rich in nucleophiles) is obviously necessary to get a very intense additional multipoint covalent immobilization. The preparation of different 'generations' of epoxy supports and the design of different protocols to fully control the first interaction between enzymes and epoxy supports will be reviewed in this paper. Finally, the possibilities of a directed immobilization of mutated enzymes (change of an amino acid by cysteine on specific points of the protein surface) on tailor-made disulfide-epoxy supports will be discussed as an almost-ideal procedure to achieve very intense and very efficient rigidification of a desired region of industrial enzymes.

201 citations

Journal ArticleDOI
TL;DR: The utility of colloidal gold as a biocompatible enzyme imobilization matrix suitable for the fabrication of enzyme electrodes is demonstrated and an electrochemical response to the enzyme substrate in the presence of an appropriate electron transfer mediator is given.
Abstract: Glucose oxidase, horseradish peroxidase, xanthine oxidase, and carbonic anhydrase have been adsorbed to colloidal gold sols with good retention of enzymatic activity. Adsorption of xanthine oxidase on colloidal gold did not result in a change in enzymatic activity as determined by active site titration with the stoichiometric inhibitor pterin aldehyde and by measurement of the apparent Michaelis constant (K′M). Gold sols with adsorbed glucose oxidase, horseradish peroxidase, and xanthine oxidase have also been electrodeposited onto conducting matrices (platinum gauze and/or glassy carbon) to make enzyme electrodes. These electrodes retained enzymatic activity and, more importantly, gave an electrochemical response to the enzyme substrate in the presence of an appropriate electron transfer mediator. Our results demonstrate the utility of colloidal gold as a biocompatible enzyme imobilization matrix suitable for the fabrication of enzyme electrodes. © 1992 John Wiley & Sons, Inc.

201 citations

Book
01 Jan 1975

200 citations


Network Information
Related Topics (5)
Cellulose
59K papers, 1.4M citations
84% related
Fermentation
68.8K papers, 1.2M citations
83% related
Aqueous solution
189.5K papers, 3.4M citations
83% related
Ionic liquid
57.2K papers, 1.6M citations
83% related
Adsorption
226.4K papers, 5.9M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023219
2022417
2021480
2020548
2019553
2018543