scispace - formally typeset
Search or ask a question
Topic

Immune system

About: Immune system is a research topic. Over the lifetime, 182892 publications have been published within this topic receiving 7927623 citations.


Papers
More filters
Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The principal mechanisms that govern the effects of inflammation and immunity on tumor development are outlined and attractive new targets for cancer therapy and prevention are discussed.

8,664 citations

Journal ArticleDOI
TL;DR: Microbial recognition by Toll-like receptors helps to direct adaptive immune responses to antigens derived from microbial pathogens to distinguish infectious nonself from noninfectious self.
Abstract: ▪ Abstract The innate immune system is a universal and ancient form of host defense against infection. Innate immune recognition relies on a limited number of germline-encoded receptors. These receptors evolved to recognize conserved products of microbial metabolism produced by microbial pathogens, but not by the host. Recognition of these molecular structures allows the immune system to distinguish infectious nonself from noninfectious self. Toll-like receptors play a major role in pathogen recognition and initiation of inflammatory and immune responses. Stimulation of Toll-like receptors by microbial products leads to the activation of signaling pathways that result in the induction of antimicrobial genes and inflammatory cytokines. In addition, stimulation of Toll-like receptors triggers dendritic cell maturation and results in the induction of costimulatory molecules and increased antigen-presenting capacity. Thus, microbial recognition by Toll-like receptors helps to direct adaptive immune responses ...

8,041 citations

Journal ArticleDOI
TL;DR: Two types of cloned helper T cells are described, defined primarily by differences in the pattern of lymphokines ynthesized, and the different functions of the two types of cells and their lymphokine synthesis are discussed.
Abstract: Effector functions in the immune system are carried out by a variety of cell types, and as our understanding of the complexity of the system expands, the number of recognized subdivisions of cell types also continues to increase. B lymphocytes, producing antibody, were initially distinguished from T lymphocytes, which provide help for B cells (1, 2). The T-cell population was further divided when surface markers allowed separation of helper cells from cytotoxic cells (3). Although there were persistent reports of heterogeneity in the helper T-cell compartment (reviewed below), only relatively recently were distinct types of helper cells resolved. In this review we describe the differences between two types of cloned helper T cells, defined primarily by differences in the pattern of lymphokines ynthesized, and we also discuss the different functions of the two types of cells and their lymphokines. Patterns of lymphokine synthesis are convenient and explicit markers to describe T-cell subclass differences, and evidence increases that many of the functions of helper T cells are predicted by the functions of the lymphokines that they synthesize after activation by antigen and presenting cells. The separation of many mouse helper T-cell clones into these two distinct types is now well established, but their origin in normal T-cell populations is still not clear. Further divisions of helper T cells may have to be recognized before a complete picture of helper T-cell function can be obtained.

7,814 citations

Journal ArticleDOI
TL;DR: Recent advances that have been made by research into the role of TLR biology in host defense and disease are described.
Abstract: The discovery of Toll-like receptors (TLRs) as components that recognize conserved structures in pathogens has greatly advanced understanding of how the body senses pathogen invasion, triggers innate immune responses and primes antigen-specific adaptive immunity. Although TLRs are critical for host defense, it has become apparent that loss of negative regulation of TLR signaling, as well as recognition of self molecules by TLRs, are strongly associated with the pathogenesis of inflammatory and autoimmune diseases. Furthermore, it is now clear that the interaction between TLRs and recently identified cytosolic innate immune sensors is crucial for mounting effective immune responses. Here we describe the recent advances that have been made by research into the role of TLR biology in host defense and disease.

7,494 citations


Network Information
Related Topics (5)
T cell
109.5K papers, 5.5M citations
96% related
Antigen
170.2K papers, 6.9M citations
95% related
Cell culture
133.3K papers, 5.3M citations
90% related
Signal transduction
122.6K papers, 8.2M citations
89% related
Receptor
159.3K papers, 8.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202411
202325,301
202237,695
202112,443
202010,962
20198,747