scispace - formally typeset
Search or ask a question

Showing papers on "Immune system published in 1997"


Journal ArticleDOI
TL;DR: In chronic inflammatory diseases, such as asthma, rheumatoid arthritis, inflammatory bowel disease, and psoriasis, several cytokines recruit activated immune and inflammatory cells to the site of lesions, thereby amplifying and perpetuating the inflammatory state.
Abstract: In chronic inflammatory diseases, such as asthma, rheumatoid arthritis, inflammatory bowel disease, and psoriasis, several cytokines recruit activated immune and inflammatory cells to the site of lesions, thereby amplifying and perpetuating the inflammatory state.1 These activated cells produce many other mediators of inflammation. What causes these diseases is still a mystery, but the disease process results from an interplay of genetic and environmental factors. Genes, such as those for atopy in asthma and for HLA antigens in rheumatoid arthritis and inflammatory bowel disease, may determine a patient's susceptibility to the disease and the disease's severity, but environmental factors, often unknown, . . .

4,624 citations


Journal ArticleDOI
TL;DR: Although the high-output NO pathway probably evolved to protect the host from infection, suppressive effects on lymphocyte proliferation and damage to other normal host cells confer upon NOS2 the same protective/destructive duality inherent in every other major component of the immune response.
Abstract: ▪ Abstract At the interface between the innate and adaptive immune systems lies the high-output isoform of nitric oxide synthase (NOS2 or iNOS). This remarkable molecular machine requires at least 17 binding reactions to assemble a functional dimer. Sustained catalysis results from the ability of NOS2 to attach calmodulin without dependence on elevated Ca2+. Expression of NOS2 in macrophages is controlled by cytokines and microbial products, primarily by transcriptional induction. NOS2 has been documented in macrophages from human, horse, cow, goat, sheep, rat, mouse, and chicken. Human NOS2 is most readily observed in monocytes or macrophages from patients with infectious or inflammatory diseases. Sustained production of NO endows macrophages with cytostatic or cytotoxic activity against viruses, bacteria, fungi, protozoa, helminths, and tumor cells. The antimicrobial and cytotoxic actions of NO are enhanced by other macrophage products such as acid, glutathione, cysteine, hydrogen peroxide, or superoxid...

4,027 citations


Journal ArticleDOI
TL;DR: Much of the cellular response to IFN-gamma can be described in terms of a set of integrated molecular programs underlying well-defined physiological systems, for example the induction of efficient antigen processing for MHC-mediated antigen presentation, which play clearly defined roles in pathogen resistance.
Abstract: Interferons are cytokines that play a complex and central role in the resistance of mammalian hosts to pathogens. Type I interferon (IFN-alpha and IFN-beta) is secreted by virus-infected cells. Immune, type II, or gamma-interferon (IFN-gamma) is secreted by thymus-derived (T) cells under certain conditions of activation and by natural killer (NK) cells. Although originally defined as an agent with direct antiviral activity, the properties of IFN-gamma include regulation of several aspects of the immune response, stimulation of bactericidal activity of phagocytes, stimulation of antigen presentation through class I and class II major histocompatibility complex (MHC) molecules, orchestration of leukocyte-endothelium interactions, effects on cell proliferation and apoptosis, as well as the stimulation and repression of a variety of genes whose functional significance remains obscure. The implementation of such a variety of effects by a single cytokine is achieved by complex patterns of cell-specific gene regulation: Several IFN-gamma-regulated genes are themselves components of transcription factors. The IFN-gamma response is itself regulated by interaction with responses to other cytokines including IFN-alpha/beta, TNF-alpha, and IL-4. Over 200 genes are now known to be regulated by IFN-gamma and they are listed in a World Wide Web document that accompanies this review. However, much of the cellular response to IFN-gamma can be described in terms of a set of integrated molecular programs underlying well-defined physiological systems, for example the induction of efficient antigen processing for MHC-mediated antigen presentation, which play clearly defined roles in pathogen resistance. A promising approach to the complexity of the IFN-gamma response is to extend the analysis of the less understood IFN-gamma-regulated genes in terms of molecular programs functional in pathogen resistance.

2,956 citations


Journal ArticleDOI
31 Oct 1997-Cell
TL;DR: Characterization of the nonclonal receptors of the innate immune system responsible for the adjuvant activity, and, evidently, for the associated side effects, would provide a powerful alternative approach, which would ultimately allow one to target these receptors directly.

2,452 citations


Journal ArticleDOI
04 Jul 1997-Science
TL;DR: In this article, a three-phase T cell reconstitution was demonstrated after HAART, with an early rise of memory CD4(+) cells, a reduction in T cell activation correlated to the decreasing retroviral activity together with an improved CD4+ T cell reactivity to recall antigens.
Abstract: Highly active antiretroviral therapy (HAART) increases CD4(+) cell numbers, but its ability to correct the human immunodeficiency virus (HIV)-induced immune deficiency remains unknown. A three-phase T cell reconstitution was demonstrated after HAART, with: (i) an early rise of memory CD4(+) cells, (ii) a reduction in T cell activation correlated to the decreasing retroviral activity together with an improved CD4(+) T cell reactivity to recall antigens, and (iii) a late rise of "naive" CD4(+) lymphocytes while CD8(+) T cells declined, however, without complete normalization of these parameters. Thus, decreasing the HIV load can reverse HIV-driven activation and CD4(+) T cell defects in advanced HIV-infected patients.

1,839 citations


Journal ArticleDOI
01 Nov 1997-Blood
TL;DR: Steinman and Cohn identified mouse spleen DC in 19731 and initiated a series of experiments that established lymphoid tissue–derived DC as potent stimulators of primary cancer.

1,587 citations


Journal ArticleDOI
TL;DR: The intent in this review is to point out the similarities and differences in these two types of host response to infection, and to indicate the present level of understanding of how these can be integrated into a more complete description of the immune response.

1,586 citations


Journal ArticleDOI
TL;DR: The effects on Th priming of (a) using altered peptide ligands as antigens, (b) varying the dose of antigen, and (c) altering costimulatory signals are discussed.
Abstract: T helper lymphocytes can be divided into two distinct subsets of effector cells based on their functional capabilities and the profile of cytokines they produce. The Th1 subset of CD4+ T cells secretes cytokines usually associated with inflammation, such as IFN-gamma and TNF and induces cell-mediated immune responses. The Th2 subset produces cytokines such as IL-4 and IL-5 that help B cells to proliferate and differentiate and is associated with humoral-type immune responses. The selective differentiation of either subset is established during priming and can be significantly influenced by a variety of factors. One of these factors, the cytokine environment, has been put forward as the major variable influencing Th development and is already well reviewed by others. Instead, in the current review, we focus on some of the alternative approaches for skewing Th1/Th2 responses. Specifically, we discuss the effects on Th priming of (a) using altered peptide ligands as antigens, (b) varying the dose of antigen, and (c) altering costimulatory signals. The potential importance of each of these variables to influence immune responses to pathogens in vivo is discussed throughout.

1,532 citations


Journal ArticleDOI
21 Aug 1997-Nature
TL;DR: It is shown that formation of peptide–MHC class II complexes is boosted by inflammatory stimuli that induce maturation of dendritic cells, which could favour presentation of infectious antigens.
Abstract: Dendritic cells have the remarkable property of presenting any incoming antigen. To do so they must not only capture antigens with high efficiency and broad specificity, but must also maximize their capacity to load class II molecules of the major histocompatibility complex (MHC) with antigenic peptides in order to present a large array of epitopes from different proteins, each at a sufficient copy number. Here we show that formation of peptide-MHC class II complexes is boosted by inflammatory stimuli that induce maturation of dendritic cells. In immature dendritic cells, class II molecules are rapidly internalized and recycled, turning over with a half-life of about 10 hours. Inflammatory stimuli induce a rapid and transient boost of class II synthesis, while the half-life of class II molecules increases to over 100 hours. These coordinated changes result in the rapid accumulation of a large number of long-lived peptide-loaded MHC class II molecules capable of stimulating T cells even after several days. The capacity of dendritic cells to load many antigenic peptides over a short period of initial exposure to inflammatory stimuli could favour presentation of infectious antigens.

1,152 citations


Journal ArticleDOI
TL;DR: CpG ODN provide a signal to switch on Th1-dominated responses to coadministered antigen and are potential adjuvants for human vaccines to elicit protective Th1 immunity.
Abstract: Synthetic oligodeoxynucleotides (ODN) that contain unmethylated CpG motifs (CpG ODN) induce macrophages to secrete IL-12, which induces interferon (IFN)-γ secretion by natural killer (NK) cells. Since these cytokines can induce T helper 1 (Th1) differentiation, we examined the effects of coadministered CpG ODN on the differentiation of Th responses to hen egg lysozyme (HEL). In both BALB/c (Th2-biased) and B10.D2 (Th1-biased) mice, immunization with HEL in incomplete Freund's adjuvant (IFA) resulted in Th2-dominated immune responses characterized by HEL-specific secretion of IL-5 but not IFN-γ. In contrast, immunization with IFA-HEL plus CpG ODN switched the immune response to a Th1-dominated cytokine pattern, with high levels of HEL-specific IFN-γ secretion and decreased HEL-specific IL-5 production. IFA-HEL plus CpG ODN also induced anti-HEL IgG2a (a Th1-associated isotype), which was not induced by IFA-HEL alone. Control non–CpG ODN did not induce IFN-γ or IgG2a, excepting lesser increases in B10.D2 (Th1-biased) mice. Thus, CpG ODN provide a signal to switch on Th1-dominated responses to coadministered antigen and are potential adjuvants for human vaccines to elicit protective Th1 immunity.

1,100 citations


Journal ArticleDOI
TL;DR: It is concluded that CCR2-/- mice have significant defects in both delayed-type hypersensitivity responses and production of Th1-type cytokines, suggesting an important and unexpected role for C CR2 activation in modulating the immune response, as well as in recruiting monocytes/macrophages to sites of inflammation.
Abstract: Monocyte chemoattractant protein-1 (MCP-1) is a potent agonist for mononuclear leukocytes and has been implicated in the pathogenesis of atherosclerosis and granulomatous lung disease. To determine the role of MCP-1 and related family members in vivo, we used homologous recombination in embryonic stem cells to generate mice with a targeted disruption of C-C chemokine receptor 2 (CCR2), the receptor for MCP-1. CCR2-/- mice were born at the expected Mendelian ratios and developed normally. In response to thioglycollate, the recruitment of peritoneal macrophages decreased selectively. In in vitro chemotaxis assays, CCR2-/- leukocytes failed to migrate in response to MCP-1. Granulomatous lung disease was induced in presensitized mice by embolization with beads coupled to purified protein derivative (PPD) of Mycobacterium bovis. As compared with wild-type littermates, CCR2-/- mice had a decrease in granuloma size accompanied by a dramatic decrease in the level of interferon gamma in the draining lymph nodes. Production of interferon gamma was also decreased in PPD-sensitized splenocytes from CCR2-/- mice and in naive splenocytes activated by concanavalin A. We conclude that CCR2-/- mice have significant defects in both delayed-type hypersensitivity responses and production of Th1-type cytokines. These data suggest an important and unexpected role for CCR2 activation in modulating the immune response, as well as in recruiting monocytes/macrophages to sites of inflammation.

Journal ArticleDOI
TL;DR: Noncoding, ISS-enriched plasmid DMAs or ISS oligonucleotides (ISS-ODNs) potently stimulate immune responses to coadministered antigens and should be given to adding noncoding DNA adjuvants to inactivated or subunit viral vaccines that, by themselves, provide only partial protection from infection.
Abstract: An adjuvant role for certain short bacterial immunostimulatory DNA sequences (ISSs) has recently been proposed on the basis of their ability to stimulate T helper-1 (Th1) responses in gene-vaccinated animals. We report here that noncoding, ISS-enriched plasmid DNAs or ISS oligonucleotides (ISS-ODNs) potently stimulate immune responses to coadministered antigens. The ISS-DNAs suppress IgE synthesis, but promote IgG and interferon-gamma (IFN-gamma) production. They furthermore initiate the production of IFN-gamma, IFN-alpha, IFN-beta, and interleukins 12 and 18, all of which foster Th1 responses and enhance cell-mediated immunity. Consideration should be given to adding noncoding DNA adjuvants to inactivated or subunit viral vaccines that, by themselves, provide only partial protection from infection.

Journal ArticleDOI
TL;DR: The results suggest that stress-induced alterations in lymphocyte redeployment may play an important role in mediating the bi-directional effects of acute versus chronic stress on cell-mediated immunity in vivo.
Abstract: Delayed type hypersensitivity (DTH) reactions are antigen-specific, cell-mediated immune responses which, depending on the antigen involved, mediate beneficial (resistance to viruses, bacteria, fungi, and certain tumors) or harmful (allergic dermatitis, autoimmunity) aspects of immune function. We have shown that acute stress administered immediately before antigenic challenge results in a significant enhancement of a skin DTH response in rats. A stress-induced trafficking or redeployment of leukocytes to the skin may be one of the factors mediating this immunoenhancement. Here we investigate the effects of varying the duration, intensity, and chronicity of stress on the DTH response and on changes in blood leukocyte distribution and glucocorticoid levels. Acute stress administered for 2 h prior to antigenic challenge, significantly enhanced the DTH response. Increasing the duration of stress from 2 h to 5 h produced the same magnitude enhancement in cutaneous DTH. Moreover, increasing the intensity of acute stress produced a significantly larger enhancement of the DTH response which was accompanied by increasing magnitudes of leukocyte redeployment. In contrast, chronic stress suppressed the DTH response when it was administered for 3 weeks before sensitization and either discontinued upon sensitization, or continued an additional week until challenge, or extended for one week after challenge. The stress-induced redeployment of peripheral blood lymphocytes was attenuated with increasing exposure to chronic stress and correlated with attenuated glucocorticoid responsivity. These results suggest that stress-induced alterations in lymphocyte redeployment may play an important role in mediating the bi-directional effects of acute versus chronic stress on cell-mediated immunity in vivo.

Journal ArticleDOI
TL;DR: It is shown that administration of anti-4-1BB monoclonal antibodies can eradicate established large tumors in mice, including the poorly immunogenic Ag104A sarcoma and the highly tumorigenic P815 masto cytoma, and the data suggest that a similar approach may be efficacious for immunotherapy of human cancer.
Abstract: The 4-1BB glycoprotein is a member of the tumor necrosis factor receptor superfamily and binds to a high-affinity ligand (4-1BBL) expressed on several antigen-presenting cells such as macrophages and activated B cells. Expression of 4-1BB is restricted to primed CD4+ and CD8+ T cells, and 4-1BB signaling either by binding to 4-1BBL or by antibody ligation delivers a dual mitogenic signal for T-cell activation and growth. These observations suggest an important role for 4-1BB in the amplification of T cell-mediated immune responses. We now show that administration of anti-4-1BB monoclonal antibodies can eradicate established large tumors in mice, including the poorly immunogenic Ag104A sarcoma and the highly tumorigenic P815 masto cytoma. The immune response induced by anti-4- 1BB monoclonal antibodies is mediated by both CD8+ and CD4+ T cells and is accompanied by a marked augmentation of tumor-selective cytolytic T-cell activity. Our data suggest that a similar approach may be efficacious for immunotherapy of human cancer.

Journal ArticleDOI
TL;DR: Detailed flow cytometric analysis of the marrow of highly engrafted mice demonstrated both lymphoid and myeloid differentiation, as well as the retention of a significant fraction of CD34(+) CD38(-) cells, which should be useful for identification of the cellular and molecular mechanisms that regulate primitive human hematopoietic cells.
Abstract: The purification of primitive human hematopoietic stem cells has been impaired by the absence of repopulation assays. By using a stringent two-step strategy involving depletion of lineage-positive cells followed by fluorescence-activated cell sorting, we have purified a cell population that is highly enriched for cells capable of multilineage repopulation in nonobese diabetic/severe combined immunodeficient (NOD/SCID) recipients. These SCID-repopulating cells (SRCs) were exclusively found in a cell fraction that expressed high levels of CD34 and no CD38. Through limiting dilution analysis using Poisson statistics, we calculated a frequency of 1 SRC in 617 CD34+ CD38− cells. The highly purified SRC were capable of extensive proliferation in NOD/SCID mice. Mice transplanted with 1 SRC (at limiting cell doses) were able to produce approximately 400,000 progeny 6 weeks after the transplant. Detailed flow cytometric analysis of the marrow of highly engrafted mice demonstrated both lymphoid and myeloid differentiation, as well as the retention of a significant fraction of CD34+ CD38− cells. These highly purified fractions should be useful for identification of the cellular and molecular mechanisms that regulate primitive human hematopoietic cells. Moreover, the ability to detect and purify primitive cells provides a means to develop conditions for maintaining and/or expanding these cells during in vitro culture.

Journal ArticleDOI
TL;DR: Infections, no matter how mild, have adverse effects on nutritional status that can impair resistance to infection and cell-mediated and nonspecific immunity are more sensitive than humoral immunity.

Journal ArticleDOI
TL;DR: This work presents a meta-anatomy of the adrenal gland and its role in the development and management of disease and urges further investigation into the role of “cell reprograming” and “reconcretization” in the course of disease progression.

Journal ArticleDOI
TL;DR: In the elderly, impaired immunity can be enhanced by modest amounts of a combination of micronutrients, and low-birth-weight infants have a prolonged impairment of cell-mediated immunity that can be partly restored by providing extra amounts of dietary zinc.

Journal ArticleDOI
TL;DR: The results suggest that TNF has an essential homeostatic role in limiting the extent and duration of an inflammatory process-i.e., an anti-inflammatory function.
Abstract: Although tumor necrosis factor (TNF) initially came to prominence because of its anti-tumor activity, most attention is now focused on its proinflammatory actions. TNF appears to play a critical role in both early and late events involved in inflammation, from localizing the noxious agent and amplifying the cellular and mediator responses at the local site and systemically, to editing (e.g., apoptosis) injured cells or effete immune cells and repairing inflammatory damage. We have generated mice deficient in TNF (TNF−/− mice) and have begun to examine the multiple functions attributed to TNF. TNF−/− mice develop normally and have no gross structural or morphological abnormalities. As predicted, they are highly susceptible to challenge with an infectious agent (Candida albicans), are resistant to the lethality of minute doses of lipopolysaccharide (LPS) following D-galactosamine treatment, have a deficiency in granuloma development, and do not form germinal centers after immunization. Phagocytic activity of macrophages appears relatively normal, as do T cell functions, as measured by proliferation, cytokine release, and cytotoxicity. B cell response to thymus-independent antigens is normal, but the Ig response to thymus-dependent antigen is reduced. Surprisingly, cytokine production induced by LPS appears essentially intact, with the exception of reduced colony-stimulating factor activity. Other unexpected findings coming from our initial analysis are as follows. (i) TNF has low toxicity in TNF−/− mice. (ii) TNF−/− mice show an anomalous late response to heat-killed Corynebacterium parvum. In contrast to the prompt response (granuloma formation, hepatosplenomegaly) and subsequent resolution phase in C. parvum-injected TNF+/+ mice, similarly treated TNF−/− mice show little or no initial response, but then develop a vigorous, disorganized inflammatory response leading to death. These results suggest that TNF has an essential homeostatic role in limiting the extent and duration of an inflammatory process—i.e., an anti-inflammatory function. (iii) In contrast to the expectation that TNF+/+ mice and TNF+/− mice would have identical phenotypes, TNF+/− mice showed increased susceptibility to high-dose LPS lethality, increased susceptibility to Candida challenge, and delayed resolution of the C. parvum-induced inflammatory process, indicating a strong gene dose requirement for different actions of TNF.

Journal ArticleDOI
02 Jan 1997-Nature
TL;DR: It is shown that Th1 cells, but not Th2 cells, are able to bind to P- selectin and E-selectin, indicating that selective recruitment is an additional level of regulation for both effector function profile and character of a local immune response.
Abstract: When activated, T helper cells differentiate into one of two subsets, Th1 and Th2, characterized by distinct profiles of cytokine production. Th1 cells activate pro-inflammatory effector mechanisms involved in protection and autoimmunity, whereas Th2 cells induce humoral and allergic responses and downregulate local inflammation. Apart from differences in the repertoire of cytokines, no phenotypic attributes are established that distinguish the two subsets. Here we show that Th1 cells, but not Th2 cells, are able to bind to P-selectin and E-selectin. Moreover, only Th1 cells can efficiently enter inflamed sites in Th1-dominated models, such as sensitized skin or arthritic joints, but not in a Th2-dominated allergic response. Immigration of Th1 cells into inflamed skin can be blocked by antibodies against P- and E-selectin. These results provide evidence for adhesion mechanisms to distinguish between the two T helper subsets and mediate their differential trafficking. They indicate that selective recruitment is an additional level of regulation for both effector function profile and character of a local immune response.

Journal ArticleDOI
TL;DR: IL-12 is essential to the generation of a protective immune response to M. tuberculosis, with its main functions being the induction of the expression of IFN-γ and the activation of antigen-specific lymphocytes capable of creating a protective granuloma.
Abstract: Immunity to Mycobacterium tuberculosis infection is associated with the emergence of protective CD4 T cells that secrete cytokines, resulting in activation of macrophages and the recruitment of monocytes to initiate granuloma formation. The cytokine-mediating macrophage activation is interferon-gamma (IFN-gamma), which is largely dependent on interleukin-12 (IL-12) for its induction. To address the role of IL-12 in immunity to tuberculosis, IL-12 p40(-/-) mice were infected with M. tuberculosis and their capacity to control bacterial growth and other characteristics of their immune response were determined. The IL-12 p40(-/-) mice were unable to control bacterial growth and this appeared to be linked to the absence of both innate and acquired sources of IFN-gamma. T cell activation as measured by delayed type hypersensitivity and lymphocyte accumulation at the site of infection were both markedly reduced in the IL-12 p40(-/-) mice. Therefore, IL-12 is essential to the generation of a protective immune response to M. tuberculosis, with its main functions being the induction of the expression of IFN-gamma and the activation of antigen-specific lymphocytes capable of creating a protective granuloma.

Journal ArticleDOI
01 Nov 1997-Cytokine
TL;DR: Major depression and TRD are accompanied by an activation of the monocytic arm of cell-mediated immunity, and the latter may be related to the immune an acute phase response in major depression; and the above disorders may persist despite successful antidepressive treatment.

Journal ArticleDOI
TL;DR: It is concluded that CpG ODN are effective as immune adjuvants and are attractive as part of a tumor immunization strategy.
Abstract: Recent advances in our understanding of the immune response are allowing for the logical design of new approaches to cancer immunization. One area of interest is the development of new immune adjuvants. Immunostimulatory oligodeoxynucleotides containing the CpG motif (CpG ODN) can induce production of a wide variety of cytokines and activate B cells, monocytes, dendritic cells, and NK cells. Using the 38C13 B cell lymphoma model, we assessed whether CpG ODN can function as immune adjuvants in tumor antigen immunization. The idiotype served as the tumor antigen. Select CpG ODN were as effective as complete Freund’s adjuvant at inducing an antigen-specific antibody response but were associated with less toxicity. These CpG ODN induced a higher titer of antigen-specific IgG2a than did complete Freund’s adjuvant, suggesting an enhanced TH1 response. Mice immunized with CpG ODN as an adjuvant were protected from tumor challenge to a degree similar to that seen in mice immunized with complete Freund’s adjuvant. We conclude that CpG ODN are effective as immune adjuvants and are attractive as part of a tumor immunization strategy.

Journal ArticleDOI
TL;DR: The data show that DC that have undergone maturation in vitro in the presence of IL‐10, have an impaired capacity to induce a Th1‐type response in vivo, leading to the development of Th2 lymphocytes, and suggest thatIL‐10 skews the Th1/Th2 balance to Th2 in vivo by selectively blocking IL‐12 synthesis by the antigen‐presenting cells that play a role of adjuvant of the primary immune response.
Abstract: The main function of dendritic cells (DC) is to induce the differentiation of naive T lymphocytes into helper cells producing a large array of lymphokines, including interleukin (IL)-2; interferon-gamma (IFN-gamma), IL-4, IL-5 and IL-10. The potent immunostimulatory properties of DC develop during a process of maturation that occurs spontaneously in vitro. Since IL-10 has been shown to inhibit Th1 responses, we determined its effect on DC maturation and accessory function. Our data show that DC that have undergone maturation in vitro in the presence of IL-10, have an impaired capacity to induce a Th1-type response in vivo, leading to the development of Th2 lymphocytes. Their inability to promote the synthesis of IFN-gamma seems to correlate with a decreased production of IL-12, an heterodimeric cytokine necessary for optimal generation of Th1-type cells. These results suggest that IL-10 skews the Th1/Th2 balance to Th2 in vivo by selectively blocking IL-12 synthesis by the antigen-presenting cells that play a role of adjuvant of the primary immune response. The cytokines present in the environment at the presentation step may, therefore, determine the class of the immune response induced by DC in vivo, i.e. Th0, Th1 and/or Th2.

Journal ArticleDOI
24 Jan 1997-Science
TL;DR: Lymphocyte-specific interferon regulatory factor (LSIRF) (now called IRF4) is a transcription factor expressed only in lymphocytes that is essential for the function and homeostasis of both mature B and mature T lymphocytes.
Abstract: Lymphocyte-specific interferon regulatory factor (LSIRF) (now called IRF4) is a transcription factor expressed only in lymphocytes. Mice deficient in IRF4 showed normal distribution of B and T lymphocyes at 4 to 5 weeks of age but developed progressive generalized lymphadenopathy. IRF4-deficient mice exhibited a profound reduction in serum immunoglobulin concentrations and did not mount detectable antibody responses. T lymphocyte function was also impaired in vivo; these mice could not generate cytotoxic or antitumor responses. Thus, IRF4 is essential for the function and homeostasis of both mature B and mature T lymphocytes.

Journal Article
TL;DR: It is found that saline-DNA immunization raised a predominantly Th1 response with mostly IgG2a anti-H1 Ab, while gene gun DNA immunization produced a predominantly th cell-type response, which was generated by the method, not the route, of DNA Immunization.
Abstract: Several routes and methods of DNA immunization have been shown to generate Ab, Th cells, and CTL responses. However, few studies have directly compared the immune responses generated by different routes and methods of DNA immunization. Utilizing an influenza hemagglutinin (H1)-expressing plasmid, we compared the immune response produced by saline injection of DNA into skin or muscle, and gene gun immunization of skin or muscle. We found that saline-DNA immunization raised a predominantly Th1 response with mostly IgG2a anti-H1 Ab, while gene gun DNA immunization produced a predominantly Th2 response with mostly IgG1 anti-H1 Abs. These distinct types of immune responses were generated by the method, not the route, of DNA immunization. The initial immunization established the Th cell-type of the immune response. The Th cell-type did not change with further DNA immunizations by the same or the alternate method, or after a viral challenge. The ability to generate different Th types was not due to differences in the doses of DNA used in saline and gene gun DNA immunization. These findings have important implications for vaccine design and studies of the mechanism of Th cell differentiation.

Journal ArticleDOI
TL;DR: In early HIV-1 infection, the induction of memory cytotoxic T lymphocytes, particularly those specific for Env, helps control viral replication and is associated with slower declines in CD4+ cell counts.
Abstract: Background Early in human immunodeficiency virus type 1 (HIV-1) infection there is a decline in viral replication that has been attributed to host immunity, but the components of this response, particularly the ability of cytotoxic T lymphocytes to control viral burden and influence the outcome of disease, are poorly understood. Methods We prospectively studied 33 patients with primary HIV-1 infection for HIV-specific activated cytotoxic T lymphocytes and memory cytotoxic T lymphocytes and compared these lymphocyte responses with changes in viral load and clinical status over the subsequent 18 to 24 months. Results Soon after infection, activated HIV-specific cytotoxic T lymphocytes, mediated primarily by CD8+ cells, were detected in 17 of 23 patients (74 percent). Memory cytotoxic T lymphocytes were found in 6 of 6 patients tested (100 percent) during the first three months of infection and in 17 of 21 patients (81 percent) tested during the first six months. The frequencies of memory cytotoxic T lymphoc...

Journal Article
TL;DR: The decrease in monocytes, NK cells, and lymphocytes, together with an increased production of IL-2 during sleep, may serve to support ongoing immune defense in extravascular lymphoid tissue during a time of diminished acute Ag challenge.
Abstract: The role of nocturnal sleep for normal immune regulation and its relation to circadian rhythm was examined in 10 men participating in two 51-h sessions One session included two regular wake-sleep cycles; the other included a night of sustained wakefulness followed by a night of recovery sleep Blood was collected every 3 h to determine PBMC counts, including the enumeration of monocytes, NK cells, and lymphocyte subsets (CD19+, CD3+, CD4+, CD8+, HLA-DR+) Production of IL-1beta, TNF-alpha, IL-2, and IFN-gamma was determined after stimulation of whole blood samples with LPS and PHA, respectively Concentrations of IL-6 and cortisol were assessed in plasma Enumeration of cells indicated significant circadian rhythms for all PBMC subsets under conditions of sustained wakefulness Compared with sustained wakefulness, nocturnal sleep acutely reduced the numbers of monocytes, NK cells, and counts of all lymphocyte subsets However, in the afternoon and evening of the day following sleep, counts of NK cells and lymphocytes were significantly higher than after nocturnal wakefulness, indicating that effects of sleep interacted with those of the circadian pacemaker Sleep markedly enhanced production of IL-2 by T cells (CD3+) but did not influence production of IL-1beta and TNF-alpha, or IL-6 concentrations Effects of sleep were not mediated by changes in cortisol The decrease in monocytes, NK cells, and lymphocytes, together with an increased production of IL-2 during sleep, may serve to support ongoing immune defense in extravascular lymphoid tissue during a time of diminished acute Ag challenge

Journal ArticleDOI
J. R. Wright1
TL;DR: It is known for several years that surfactant lipids suppress a variety of immune cell functions, most notably lymphocyte proliferation, which, conversely, is augmented by SP-A, and changes in lipid-to-protein ratios may be important in regulating the immune status of the lung.
Abstract: The possibility that the lipoprotein complex of lung surfactant functions in pulmonary host defense as well as lowering surface tension at the air-liquid interface has been the subject of renewed interest in light of the finding that surfactant proteins A and D (SP-A and SP-D) are members of a family of proteins known as collectins. The collectins, so named because they have in common an NH2-terminal collagen-like domain and a COOH-terminal lectin (carbohydrate binding) domain, are found in both lung and serum and participate in "innate" immunity, acting before induction of an antibody-mediated response. In vitro, many of the collectins stimulate phagocytosis, chemotaxis, and production of reactive oxygen and regulate cytokine release by immune cells. It has been known for several years that surfactant lipids suppress a variety of immune cell functions, most notably lymphocyte proliferation, which, conversely, is augmented by SP-A. Thus surfactant lipids and proteins may be counterregulatory, and changes in lipid-to-protein ratios may be important in regulating the immune status of the lung. That these ratios change in disease states is clear, but it is not known whether the alterations are a cause or an effect. Important future studies with mice in which the SP-A and SP-D genes have been ablated will help clarify the role of surfactant in immune function.

Journal ArticleDOI
TL;DR: CD4+ T-cell death mediated by HIV-1 infection may result in a preferential decline in the number of naive CD4- T cells and disruptions of the CD4+T-cell repertoire that are not immediately corrected by antiviral or immune-based therapies.
Abstract: Changes in CD4+ T-cell surface marker phenotype and antigen receptor (TCR) repertoire were examined during the course of HIV infection and following therapy. A preferential decline in naive CD4+ T cells was noted as disease progressed. Following protease inhibitor therapy, naive CD4+ T cells increased only if they were present before initiation of therapy. Disruptions of the CD4+ TCR repertoire were most prevalent in patients with the lowest CD4+ T-cell counts. Antiviral or IL-12 therapy-induced increases in CD4+ T-cell counts led to only minor changes in previously disrupted repertoires. Thus, CD4+ T-cell death mediated by HIV-1 infection may result in a preferential decline in the number of naive CD4+ T cells and disruptions of the CD4+ T-cell repertoire that are not immediately corrected by antiviral or immune-based therapies.