scispace - formally typeset
Search or ask a question
Topic

Impedance bridging

About: Impedance bridging is a research topic. Over the lifetime, 3300 publications have been published within this topic receiving 55268 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper deals with the design of the output impedance of uninterruptible power system (UPS) inverters with parallel-connection capability, and proposes novel control loops to achieve both stable output impedance and proper power balance.
Abstract: This paper deals with the design of the output impedance of uninterruptible power system (UPS) inverters with parallel-connection capability. In order to avoid the need for any communication among modules, the power-sharing control loops are based on the P/Q droop method. Since in these systems the power-sharing accuracy is highly sensitive to the inverters output impedance, novel control loops to achieve both stable output impedance and proper power balance are proposed. In this sense, a novel wireless controller is designed by using three nested loops: 1) the inner loop is performed by using feedback linearization control techniques, providing a good quality output voltage waveform; 2) the intermediate loop enforces the output impedance of the inverter, achieving good harmonic power sharing while maintaining low output voltage total harmonic distortion; and 3) the outer loop calculates the output active and reactive powers and adjusts the output impedance value and the output voltage frequency during the load transients, obtaining excellent power sharing without deviations in either the frequency or the amplitude of the output voltage. Simulation and experimental results are reported from a parallel-connected UPS system sharing linear and nonlinear loads.

1,076 citations

Journal ArticleDOI
TL;DR: In this article, a power control strategy for a low-voltage microgrid is proposed, where the mainly resistive line impedance, the unequal impedance among distributed generation (DG) units, and the microgrid load locations make the conventional frequency and voltage droop method unpractical.
Abstract: In this paper, a power control strategy is proposed for a low-voltage microgrid, where the mainly resistive line impedance, the unequal impedance among distributed generation (DG) units, and the microgrid load locations make the conventional frequency and voltage droop method unpractical. The proposed power control strategy contains a virtual inductor at the interfacing inverter output and an accurate power control and sharing algorithm with consideration of both impedance voltage drop effect and DG local load effect. Specifically, the virtual inductance can effectively prevent the coupling between the real and reactive powers by introducing a predominantly inductive impedance even in a low-voltage network with resistive line impedances. On the other hand, based on the predominantly inductive impedance, the proposed accurate reactive power sharing algorithm functions by estimating the impedance voltage drops and significantly improves the reactive power control and sharing accuracy. Finally, considering the different locations of loads in a multibus microgrid, the reactive power control accuracy is further improved by employing an online estimated reactive power offset to compensate the effects of DG local load power demands. The proposed power control strategy has been tested in simulation and experimentally on a low-voltage microgrid prototype.

1,060 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered the problem of matching an arbitrary load impedance to a pure resistance by means of a reactive network and derived necessary and sufficient conditions for the physical realizability of a function of frequency representing the input reflection coefficient of a matching network terminated in a prescribed load impedance.
Abstract: This paper deals with the general problem of matching an arbitrary load impedance to a pure resistance by means of a reactive network. It consists primarily of a systematic study of the origin and nature of the theoretical limitations on the tolerance and bandwidth of match and of their dependence on the characteristics of the given load impedance. Necessary and sufficient conditions are derived for the physical realizability of a function of frequency representing the input reflection coefficient of a matching network terminated in a prescribed load impedance. These conditions of physical realizability are then transformed into a set of integral relations involving the logarithm of the magnitude of the reflection coefficient. Such relations are particularly suitable for the study of the limitations on the bandwidth and tolerance of match. Definite expressions for these quantities are obtained in special cases. The practical problem of approaching the optimum theoretical tolerance by means of a network with a finite number of elements is also considered. Design curves are provided for a particularly simple but very important type of load impedance. In addition, a very convenient method is presented for computing the values of the elements of the resulting matching network.

852 citations

Patent
26 Oct 1981
TL;DR: In this article, a return electrode monitoring system for use with a split patient return electrode having two, electrically isolated electrode elements adapted for contacting a patient, the system comprising means responsive to the impedance between the two electrode elements for producing a signal which is a function of the impedance, means for establishing a desired range having an upper limit and a lower limit for the impedance when the patient is in contact with the electrode elements, determining means for determining whether the impedance is within the desired range; and adjusting means for adjusting the upper limit to adapt the system to the particular impedance of the
Abstract: A return electrode monitoring system for use with a split patient return electrode having two, electrically isolated electrode elements adapted for contacting a patient, the system comprising means responsive to the impedance between the two electrode elements for producing a signal which is a function of the impedance; means for establishing a desired range having an upper limit and a lower limit for the impedance when the patient is in contact with the electrode elements; determining means responsive to the signal for determining whether the impedance is within the desired range; and adjusting means for adjusting the upper limit to adapt the system to the particular impedance of the patient in response to the particular impedance occurring within the desired range.

807 citations

Journal ArticleDOI
Wei Yao1, Min Chen1, Jose Matas, Josep M. Guerrero, Zhaoming Qian1 
TL;DR: It is concluded that the conventional droop method cannot achieve efficient power sharing for the case of a system with complex impedance condition, and a novel droop controller that considers the impact of complex impedance is proposed.
Abstract: This paper investigates the characteristics of the active and reactive power sharing in a parallel inverters system under different system impedance conditions. The analyses conclude that the conventional droop method cannot achieve efficient power sharing for the case of a system with complex impedance condition. To achieve the proper power balance and minimize the circulating current in the different impedance situations, a novel droop controller that considers the impact of complex impedance is proposed in this paper. This controller can simplify the coupled active and reactive power relationships, which are caused by the complex impedance in the parallel system. In addition, a virtual complex impedance loop is included in the proposed controller to minimize the fundamental and harmonic circulating current that flows in the parallel system. Compared to the other methods, the proposed controller can achieve accurate power sharing, offers efficient dynamic performance, and is more adaptive to different line impedance situations. Simulation and experimental results are presented to prove the validity and the improvements achieved by the proposed controller.

779 citations


Network Information
Related Topics (5)
Capacitor
166.6K papers, 1.4M citations
81% related
Voltage
296.3K papers, 1.7M citations
81% related
AC power
80.9K papers, 880.8K citations
80% related
Amplifier
163.9K papers, 1.3M citations
77% related
Electric power system
133K papers, 1.7M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234
202216
20214
20206
20195
201821