scispace - formally typeset
Search or ask a question
Topic

Impedance control

About: Impedance control is a research topic. Over the lifetime, 3654 publications have been published within this topic receiving 69312 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that components of the manipulator impedance may be combined by superposition even when they are nonlinear, and a generalization of a Norton equivalent network is defined for a broad class of nonlinear manipulators which separates the control of motion from theControl of impedance while preserving the superposition properties of the Norton network.
Abstract: Manipulation fundamentally requires the manipulator to be mechanically coupled to the object being manipulated; the manipulator may not be treated as an isolated system. This three-part paper presents an approach to the control of dynamic interaction between a manipulator and its environment. In Part I this approach is developed by considering the mechanics of interaction between physical systems. Control of position or force alone is inadequate; control of dynamic behavior is also required. It is shown that as manipulation is a fundamentally nonlinear problem, the distinction between impedance and admittance is essential, and given the environment contains inertial objects, the manipulator must be an impedance. A generalization of a Norton equivalent network is defined for a broad class of nonlinear manipulators which separates the control of motion from the control of impedance while preserving the superposition properties of the Norton network. It is shown that components of the manipulator impedance may be combined by superposition even when they are nonlinear.

3,356 citations

Proceedings ArticleDOI
06 Jun 1984
TL;DR: In this paper, a unified approach to kinematically constrained motion, dynamic interaction, target acquisition and obstacle avoidance is presented, which results in a unified control of manipulator behaviour.
Abstract: Manipulation fundamentally requires a manipulator to be mechanically coupled to the object being manipulated. A consideration of the physical constraints imposed by dynamic interaction shows that control of a vector quantity such as position or force is inadequate and that control of the manipulator impedance is also necessary. Techniques for control of manipulator behaviour are presented which result in a unified approach to kinematically constrained motion, dynamic interaction, target acquisition and obstacle avoidance.

3,292 citations

Proceedings ArticleDOI
05 Aug 1995
TL;DR: It is proposed that for natural tasks, zero motion force bandwidth isn't everything, and incorporating series elasticity as a purposeful element within the actuator is a good idea.
Abstract: It is traditional to make the interface between an actuator and its load as stiff as possible. Despite this tradition, reducing interface stiffness offers a number of advantages, including greater shock tolerance, lower reflected inertia, more accurate and stable force control, less inadvertent damage to the environment, and the capacity for energy storage. As a trade-off, reducing interface stiffness also lowers zero motion force bandwidth. In this paper, the authors propose that for natural tasks, zero motion force bandwidth isn't everything, and incorporating series elasticity as a purposeful element within the actuator is a good idea. The authors use the term elasticity instead of compliance to indicate the presence of a passive mechanical spring in the actuator. After a discussion of the trade-offs inherent in series elastic actuators, the authors present a control system for their use under general force or impedance control. The authors conclude with test results from a revolute series-elastic actuator meant for the arms of the MIT humanoid robot Cog and for a small planetary rover.

2,309 citations

Journal ArticleDOI
TL;DR: In this article, a feedback control algorithm for imposing a desired cartesian impedance on the end-point of a nonlinear manipulator is presented, which completely eliminates the need to solve the ''inverse kinematics problem'' in robot motion control.
Abstract: This three-part paper presents an approach to the control of dynamic interaction between a manipulator and its environment. Part I presented the theoretical reasoning behind impedance control. In Part II the implementation of impedance control is considered. A feedback control algorithm for imposing a desired cartesian impedance on the end-point of a nonlinear manipulator is presented. This algorithm completely eliminates the need to solve the \"inverse kinematics problem\" in robot motion control. The modulation of end-point impedance without using feedback control is also considered, and it is shown that apparently \"redundant\" actuators and degrees of freedom such vs exist in the primate musculoskeletal system may be used to modulate end-point impedance and may play an essential functional role in the control of dynamic interaction.

1,021 citations

Journal ArticleDOI
15 Mar 2004
TL;DR: The results indicate that a variable-impedance orthosis may have certain clinical benefits for the treatment of drop-foot gait compared to conventional ankle-foot orthoses having zero or constant stiffness joint behaviors.
Abstract: An active ankle-foot orthoses (AAFO) is presented where the impedance of the orthotic joint is modulated throughout the walking cycle to treat drop-foot gait. During controlled plantar flexion, a biomimetic torsional spring control is applied where orthotic joint stiffness is actively adjusted to minimize forefoot collisions with the ground. Throughout late stance, joint impedance is minimized so as not to impede powered plantar flexion movements, and during the swing phase, a torsional spring-damper control lifts the foot to provide toe clearance. To assess the clinical effects of variable-impedance control, kinetic and kinematic gait data were collected on two drop-foot participants wearing the AAFO. For each participant, zero, constant, and variable impedance control strategies were evaluated and the results were compared to the mechanics of three age, weight, and height matched normals. We find that actively adjusting joint impedance reduces the occurrence of slap foot allows greater powered plantar flexion and provides for less kinematic difference during swing when compared to normals. These results indicate that a variable-impedance orthosis may have certain clinical benefits for the treatment of drop-foot gait compared to conventional ankle-foot orthoses having zero or constant stiffness joint behaviors.

772 citations


Network Information
Related Topics (5)
Robot
103.8K papers, 1.3M citations
89% related
Adaptive control
60.1K papers, 1.2M citations
87% related
Control theory
299.6K papers, 3.1M citations
85% related
Control system
129K papers, 1.5M citations
82% related
Robustness (computer science)
94.7K papers, 1.6M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023110
2022294
2021171
2020234
2019245
2018213