scispace - formally typeset
Search or ask a question
Topic

Implied volatility

About: Implied volatility is a research topic. Over the lifetime, 10265 publications have been published within this topic receiving 329779 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an exponential ARCH model is proposed to study volatility changes and the risk premium on the CRSP Value-Weighted Market Index from 1962 to 1987, which is an improvement over the widely-used GARCH model.
Abstract: This paper introduces an ARCH model (exponential ARCH) that (1) allows correlation between returns and volatility innovations (an important feature of stock market volatility changes), (2) eliminates the need for inequality constraints on parameters, and (3) allows for a straightforward interpretation of the "persistence" of shocks to volatility. In the above respects, it is an improvement over the widely-used GARCH model. The model is applied to study volatility changes and the risk premium on the CRSP Value-Weighted Market Index from 1962 to 1987. Copyright 1991 by The Econometric Society.

10,019 citations

Journal ArticleDOI
Steven L. Heston1
TL;DR: In this paper, a closed-form solution for the price of a European call option on an asset with stochastic volatility is derived based on characteristi c functions and can be applied to other problems.
Abstract: I use a new technique to derive a closed-form solution for the price of a European call option on an asset with stochastic volatility. The model allows arbitrary correlation between volatility and spotasset returns. I introduce stochastic interest rates and show how to apply the model to bond options and foreign currency options. Simulations show that correlation between volatility and the spot asset’s price is important for explaining return skewness and strike-price biases in the BlackScholes (1973) model. The solution technique is based on characteristi c functions and can be applied to other problems.

7,867 citations

Journal ArticleDOI
TL;DR: In this article, a modified GARCH-M model was used to find a negative relation between conditional expected monthly return and conditional variance of monthly return, using seasonal patterns in volatility and nominal interest rates to predict conditional variance.
Abstract: We find support for a negative relation between conditional expected monthly return and conditional variance of monthly return, using a GARCH-M model modified by allowing (1) seasonal patterns in volatility, (2) positive and negative innovations to returns having different impacts on conditional volatility, and (3) nominal interest rates to predict conditional variance. Using the modified GARCH-M model, we also show that monthly conditional volatility may not be as persistent as was thought. Positive unanticipated returns appear to result in a downward revision of the conditional volatility whereas negative unanticipated returns result in an upward revision of conditional volatility. THE TRADEOFF BETWEEN RISK and return has long been an important topic in asset valuation research. Most of this research has examined the tradeoff between risk and return among different securities within a given time period. The intertemporal relation between risk and return has been examined by several authors-Fama and Schwert (1977), French, Schwert, and Stambaugh (1987), Harvey (1989), Campbell and Hentschel (1992), Nelson (1991), and Chan, Karolyi, and Stulz (1992), to name a few. This paper extends that research.

7,837 citations

Journal ArticleDOI
TL;DR: In this article, the option price is determined in series form for the case in which the stochastic volatility is independent of the stock price, and the solution of this differential equation is independent if (a) the volatility is a traded asset or (b) volatility is uncorrelated with aggregate consumption, if either of these conditions holds, the risk-neutral valuation arguments of Cox and Ross [4] can be used in a straightfoward way.
Abstract: One option-pricing problem that has hitherto been unsolved is the pricing of a European call on an asset that has a stochastic volatility. This paper examines this problem. The option price is determined in series form for the case in which the stochastic volatility is independent of the stock price. Numerical solutions are also produced for the case in which the volatility is correlated with the stock price. It is found that the Black-Scholes price frequently overprices options and that the degree of overpricing increases with the time to maturity. ONE OPTION-PRICING PROBLEM that has hitherto remained unsolved is the pricing of a European call on a stock that has a stochastic volatility. From the work of Merton [12], Garman [6], and Cox, Ingersoll, and Ross [3], the differential equation that the option must satisfy is known. The solution of this differential equation is independent of risk preferences if (a) the volatility is a traded asset or (b) the volatility is uncorrelated with aggregate consumption. If either of these conditions holds, the risk-neutral valuation arguments of Cox and Ross [4] can be used in a straightfoward way. This paper produces a solution in series form for the situation in which the stock price is instantaneously uncorrelated with the volatility. We do not assume that the volatility is a traded asset. Also, a constant correlation between the instantaneous rate of change of the volatility and the rate of change of aggregate consumption can be accommodated. The option price is lower than the BlackScholes (B-S) [1] price when the option is close to being at the money and higher when it is deep in or deep out of the money. The exercise prices for which overpricing by B-S takes place are within about ten percent of the security price. This is the range of exercise prices over which most option trading takes place, so we may, in general, expect the B-S price to overprice options. This effect is exaggerated as the time to maturity increases. One of the most surprising implications of this is that, if the B-S equation is used to determine the implied volatility of a near-the-money option, the longer the time to maturity the lower the implied volatility. Numerical solutions for the case in which the volatility is correlated with the stock price are also examined. The stochastic volatility problem has been examined by Merton [13], Geske [7], Johnson [10], Johnson and Shanno [11], Eisenberg [5], Wiggins [16], and

4,344 citations

BookDOI
30 Dec 2003
TL;DR: In this article, the authors provide a self-contained overview of the theoretical, numerical, and empirical aspects involved in using jump processes in financial modelling, and it does so in terms within the grasp of nonspecialists.
Abstract: WINNER of a Riskbook.com Best of 2004 Book Award!During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematical tools required for applications can be intimidating. Potential users often get the impression that jump and Levy processes are beyond their reach.Financial Modelling with Jump Processes shows that this is not so. It provides a self-contained overview of the theoretical, numerical, and empirical aspects involved in using jump processes in financial modelling, and it does so in terms within the grasp of nonspecialists. The introduction of new mathematical tools is motivated by their use in the modelling process, and precise mathematical statements of results are accompanied by intuitive explanations.Topics covered in this book include: jump-diffusion models, Levy processes, stochastic calculus for jump processes, pricing and hedging in incomplete markets, implied volatility smiles, time-inhomogeneous jump processes and stochastic volatility models with jumps. The authors illustrate the mathematical concepts with many numerical and empirical examples and provide the details of numerical implementation of pricing and calibration algorithms.This book demonstrates that the concepts and tools necessary for understanding and implementing models with jumps can be more intuitive that those involved in the Black Scholes and diffusion models. If you have even a basic familiarity with quantitative methods in finance, Financial Modelling with Jump Processes will give you a valuable new set of tools for modelling market fluctuations.

3,210 citations


Network Information
Related Topics (5)
Volatility (finance)
38.2K papers, 979.1K citations
92% related
Financial market
35.5K papers, 818.1K citations
90% related
Interest rate
47K papers, 1M citations
90% related
Market liquidity
37.7K papers, 934.8K citations
90% related
Stock market
44K papers, 1M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023105
2022177
2021228
2020230
2019231
2018250