scispace - formally typeset
Search or ask a question
Topic

Incompatible element

About: Incompatible element is a research topic. Over the lifetime, 2420 publications have been published within this topic receiving 154052 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors proposed a new constraint on mantle composition: the differentiated part of the mantle, chemically depleted after separation of the major portion of the continental crust, was subsequently internally rehomogenized.

1,475 citations

Journal ArticleDOI
TL;DR: In this article, the covariant behavior of Lu-Hf and Sm-Nd isotopes during most magmatic processes has been recognized, but the details of this behavior in the depleted mantle reservoir have not been adequately examined.

1,250 citations

Journal ArticleDOI
TL;DR: Agarwal et al. as mentioned in this paper presented a comprehensive geochemical data set for the most recent volcanics from the Mariana Islands, which provides new constraints on the timing and nature of fluxes from the subducting slab.
Abstract: We present a comprehensive geochemical data set for the most recent volcanics from the Mariana Islands, which provides new constraints on the timing and nature of fluxes from the subducting slab. The lavas display many features typical of island arc volcanics, with all samples showing large negative niobium anomalies and enrichments in alkaline earth elements and lead (e.g., high Ba/La and Pb/Ce). Importantly, many of these key ratios correlate with a large range in 238U excesses, (238U/230Th) = 0.97–1.56. Geochemical features show island to island variations; lavas from Guguan have the largest 238U-excesses, Pb/Ce and Ba/La ratios, while Agrigan lavas have small 238U excesses, the least radiogenic 143Nd/144Nd, and the largest negative cerium and niobium anomalies. These highly systematic variations enable two discrete slab additions to the subarc mantle to be identified. The geochemical features of the Agrigan lavas are most consistent with a dominant subducted sediment contribution. The added sedimentary component is not identical to bulk subducted sediment and notably shows a marked enrichment of Th relative to Nb. This is most readily explained by melt fractionation of the sediment with residual rutile and transfer of sedimentary material as a melt phase. For most of the highly incompatible elements, the sedimentary contribution dominates the total elemental budgets of the lavas. The characteristics best exemplified by the Guguan lavas are attributed to a slab-derived aqueous fluid phase, and Pb and Sr isotope compositions point toward the subducted, altered oceanic crust as a source of this fluid. Variable addition of the sedimentary component, but near-constant aqueous fluid flux along arc strike, can create the compositional trends observed in the Mariana lavas. High field strength element ratios (Ta/Nb and Zr/Nb) of the sediment poor Guguan lavas are higher than those of most mid-oceanic ridge basalts and suggest a highly depleted subarc mantle prior to any slab additions. The 238U-230Th systematics indicate >350 kyr between sediment and mantle melting but <30 kyr between slab dehydration and eruption of the lavas. This necessitates rapid magma migration rates and suggests that the aqueous fluid itself may trigger major mantle melting.

1,221 citations

Journal ArticleDOI
TL;DR: In this article, a systematic study of rare earth and other trace elements in discrete diopsides from residual abyssal peridotites sampled from 5000 km of ocean ridge demonstrates that they are the residues of variable degrees of melting in the garnet and spinel peridotsite fields.
Abstract: A systematic study of rare earth and other trace elements in discrete diopsides from residual abyssal peridotites sampled from 5000 km of ocean ridge demonstrates that they are the residues of variable degrees of melting in the garnet and spinel peridotite fields. Further, the data clearly demonstrate that the peridotites are the residues of near-fractional melting, not batch melting, and that typical abyssal basalt can evolve from aggregated fractional melts. Ion microprobe analyses of diopsides in abyssal peridotites from fracture zones along the America-Antarctica and Southwest Indian ridges reveal ubiquitous extreme fractionation of rare earth elements (REE) ([Ce/Yb]n = 0.002–0.05); depletion of Ti (300–1600 ppm), Zr (0.1–10 ppm), and Sr (0.1–10 ppm); and fractionation of Zr relative to Ti (Ti/Zr = 250–4000). Ti and Zr in diopsides decrease with decreasing modal cpx in the peridotites, and samples dredged near hotspots are more depleted in incompatible elements than those dredged away from hotspots, consistent with higher degrees upper mantle melting in the former. All studied samples exhibit marked negative anomalies in Ti and Zr relative to REE. Incompatible element concentrations in peridotite clinopyroxenes are well modeled by repeated melting and segregation in ≤0.1% increments to a total of 5–25% melting, a process very close to Rayleigh (fractional) melting; batch melting of a LREE-depleted source cannot account for the observed trace element concentrations in abyssal peridotites. The shapes of some REE patterns are consistent with variable degrees of melting initiated within the garnet stability field. Trace element concentrations in calculated integrated fractional liquids approximate the composition of primitive ocean floor basalts, consistent with postsegregation aggregation of small increment melts produced over a depth and melting interval.

1,204 citations

Journal ArticleDOI
TL;DR: Lead isotopic compositions of young volcanic rocks from different tectonic environments have distinctive characteristics their differences are evaluated within the framework of global tectonics and mantle differentiation Ocean island leads are in general more radiogenic than mid-ocean ridge basalt (morb) leads as discussed by the authors.
Abstract: Lead isotopic compositions of young volcanic rocks from different tectonic environments have distinctive characteristics Their differences are evaluated within the framework of global tectonics and mantle differentiation Ocean island leads are in general more radiogenic than mid-ocean ridge basalt (morb) leads They form linear trends on lead isotopic ratio plots Many of the trends extend toward the field of morb On plots of 207 P b / 204 Pb against 206 Pb / 204 Pb, their slopes are generally close to 01 Island arc leads in general are confined between sediment and morb type leads with slopes of ca 030 on a plot of 207 P b / 204 Pb against 206 Pb / 204 Pb Pb, Sr and Nd isotopic data of Hawaiian volcanics are closely examined Data from each island support a two-component mixing model However, there is a lack of full range correlation between islands, indicating heterogeneity in the end members This mixing model could also be extended to explain data from the Iceland-Reykjanes ridge, and from 45° N on the Atlantic Ridge The observed chemical and isotopic heterogeneity in young volcanic rocks is considered to be a result of long-term as well as short-term mantle differentiation and mixing Lead isotopic data from ocean islands are interpreted in terms of mantle evolution models that involve long-term (more than 2 Ga) mantle chemical and isotopic heterogeneity Incompatible element enriched ‘plume’-type morb have Th/U ratios ca 30 too low and Rb/Sr ratios ca 004 too high to generate the observed 208 Pb and 87 Sr respectively for long periods of time Elemental fractionation in the mantle must have occurred very recently This conclusion also applies to mantle sources for ocean island alkali basalts and nephelinites Depletion of incompatible elements in morb sources is most probably due to continuous extraction of silicate melt and/or fluid phase from the low-velocity zone throughout geological time Data on Pb isotopes, Sr isotopes and trace elements on volcanic rocks from island arcs are evaluated in terms of mixing models involving three components derived from (1) sub-arc mantle wedge, (2) dehydration or partial melting of subducted ocean crust, and (3) continental crust contamination In contrast to the relation between 87 Sr/ 86 Sr and 143 Nd / 144 Nd ratios of ocean volcanics, there is a general lack of correlation between Pb and Sr isotopic ratios except that samples with very radiogenic Pb ( 206 Pb / 204 Pb > 195) have low 87 Sr/ 87 Sr ratios (07028- 07035) These samples also have inferred source Th/U ratios (30-35) not high enough to support long-term growth of 208 Pb Data suggest that their mantle sources have long-term integrated depletion in Rb, Th, U and light ree High 238 U / 204 Pb (y a)values required by the Pb isotopic data are most probably due to depletion of Pb by separation of a sulphide phase Relations between Pb, Sr and Nd isotopic ratios of young volcanic rocks could be explained by simultaneous upward migration of silicate and/or fluid phase and downward migration of a sulphide phase in a differentiating mantleration of a sulphide phase in a differentiating mantle

1,167 citations


Network Information
Related Topics (5)
Metamorphism
18.3K papers, 655.8K citations
94% related
Continental crust
11.1K papers, 677.5K citations
94% related
Basalt
18.6K papers, 805.1K citations
93% related
Mantle (geology)
26.1K papers, 1.3M citations
92% related
Zircon
23.7K papers, 786.6K citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202216
202157
202056
201960
201851