scispace - formally typeset
Search or ask a question
Topic

Incompatible element

About: Incompatible element is a research topic. Over the lifetime, 2420 publications have been published within this topic receiving 154052 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, trace element and isotopic compositions of mid-Tertiary siliceous magma sequences from two localities of the Sierra Madre Occidental, northern Mexico, display differences that reflect the composition and age of the basement through which they erupted.

32 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that a minor group of evolved basalts (anomalous group of basalts or AGB) is enriched in both compatible (Mg, Fe, Ti, Cr, and Ni) and incompatible (K, Th, and La) elements and depleted in Ca and Si relative to the dominant group of evolving basalts.

32 citations

Journal ArticleDOI
TL;DR: In this article, the melting inclusions and coexisting minerals from meymechites and alkali picrites of the Siberian plume were estimated at the level of the lithosphere-asthenosphere boundary.
Abstract: Based on the compositions of melt inclusions and coexisting minerals from meymechites and alkali picrites, the temperatures and pressures of the ascending material of the Siberian plume were estimated at the level of the lithosphere-asthenosphere boundary. The melts trapped in olivine show high contents of titanium and other incompatible elements. The rocks crystallized under high oxygen fugacity conditions. The calculated compositions of primary magmas are similar to the compositions of near-solidus melts derived from a dry fertile lherzolite at 7 GPa. The estimated potential temperature is close to 1650°C, which is much higher than the potential temperature of plumes that generate the primary basaltic magmas of mid-ocean ridges. The obtained data show that, during the activity of the giant magma-generating system of the Siberian trap province, hot peridotite masses ascended probably from the core-mantle boundary up to the base of the continental lithosphere. Our results are at odds with the suggestion that the basalt flows of the Siberian and other large igneous provinces are not related to mantle plumes.

32 citations

Journal ArticleDOI
TL;DR: In this article, major and trace element data for granitoid rocks from the Gore-Gambella Precambrian terranes of western Ethiopia have been used to infer their petrogenetic history and the tectonic environment in which the magmas were emplaced.

32 citations

01 Mar 1974
TL;DR: In this article, simple CIPW norms for the proposed terrestrial upper mantle material were derived based on the cooling history, crystallization sequence and the variations of the 100 Mg/Mg + Fe ratio of the liquid and crystals during the crystallization process.
Abstract: Based on simple CIPW norms for the proposed terrestrial upper mantle material, it is shown that if the Moon fissioned from the Earth and gravitationally differentiated, it could have a 72 km thick anorthosite (An97) crust, a calcium poor (3.8% by weight) pyroxenite upper mantle 100 Mg/Mg + Fe = 75 to 80) ending at a depth of 313 km and a dunite (Fo93_95) lower mantle below a depth of 313 km. Refinements of these simple norm models, based on the cooling history, crystallization sequence and the variations of the 100 Mg/Mg + Fe ratio of the liquid and crystals during the crystallization sequence, indicate that the final form of such a Moon could have the following properties: (1) a primitive, cumulate anorthosite - minor troctolite crust with intrusive and extrusive feldspathic basalts and KREEP rich norites; the thickness of this crust would be 75 km; (2) a zone in the bottom of the crust and the top of the upper mantle which is rich in KREEP, the incompatible elements, silica, and possibly voltiles; this zone would be the source area for the upland feldspathic basalts, KREEP rich norites and KREEP and silica rich fluids; (3) an upper mantle between the depths of 75 km and 350 to 400 km which consists of peridotite containing 80–85% pyroxene (Wo10En68_72Fs18_22) and 15–20% olivine (Fo75_80); the Al2O3 content of the upper mantle is ∼ 3%; the peridotite layer would be the source area for mare basalts and; (4) a lower mantle below a depth of 350–400 km which consists of dunite (Fo93_97). The cooling history of such a moon indicates that the primitive anorthosite crust would have been completely formed within 108 yr after fission. The extrusion and intrusion of upland basalts and KREEP rich norites and the metamorphism of the crustal rocks via KREEP and silica rich fluids would have ended about 4 × 109 yr ago when cooling well below the solidus reached a depth of 150 km. As cooling continied, the only source of magmas after 4 × 109 yr ago would have been the peridotite upper mantle, i.e. the source area of the mare basalts. Extrusion of mare basalts ended when cooling below the solidus reached the top of the refractory dunite lower mantle 3-3.3 × 109 yr ago. Thus, it is shown that the chemistry, primary lithology, structure and developmental history of a fissioned Moon readily match those known for the real Moon. As such, the models presented in this paper strongly support the fission origin of the Moon.

32 citations


Network Information
Related Topics (5)
Metamorphism
18.3K papers, 655.8K citations
94% related
Continental crust
11.1K papers, 677.5K citations
94% related
Basalt
18.6K papers, 805.1K citations
93% related
Mantle (geology)
26.1K papers, 1.3M citations
92% related
Zircon
23.7K papers, 786.6K citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202216
202157
202056
201960
201851