scispace - formally typeset
Search or ask a question
Topic

Incompatible element

About: Incompatible element is a research topic. Over the lifetime, 2420 publications have been published within this topic receiving 154052 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present new 40Ar/39Ar age data for the Discovery Rise (South Atlantic Ocean) that show an age progression in the direction of plate motion from 23Ma in the southwest to 40Ma in northeast of the Rise, consistent with formation of the rise above a mantle plume.

32 citations

Journal ArticleDOI
TL;DR: In this article, the Tertiary island arc in the Izu-Mariana region has been accompanied by the development of three different volcanic suites: 1) oceanridge basalt now exposed as the metamorphic basement on Yap; 2) island-arc tholeiites of Eocene to early Oligocene age characterized by low contents of incompatible elements at all levels of silica enrichment; and 3) calc-alkalic rocks of late-Oligocene-to-early Miocene age showing higher contents of silicas and incompatible elements.
Abstract: Petrological evolution of the Tertiary island arc in the Izu-Mariana region has been accompanied by the development of three different volcanic suites: 1) oceanridge basalt now exposed as the metamorphic basement on Yap; 2) island-arc tholeiites of Eocene to early Oligocene age characterized by low contents of incompatible elements at all levels of silica enrichment; and 3) calc-alkalic rocks of late Oligocene to early Miocene age showing higher contents of silica and incompatible elements. All these three suites have primitive, undifferentiated basalts or andesites (boninites) characterized by high Mg/Fe, Cr, and Ni, suggesting that they have been derived from an upper mantle peridotite at relatively high temperatures. The earliest volcanism appears to have occurred at a spreading ridge. Later, as subduction proceeded, the island-arc tholeiite magma may have been produced by the introduction of a smaller amount of water into the locus of fusion from the subducted oceanic crust. An increasingly larger amount of water introduced into the same region could have led to the development of the more siliceous, calc-alkalic magma, as represented typically by the boninite.

32 citations

Journal ArticleDOI
TL;DR: In this article, primary melt inclusions in olivine phenocrysts of basic lavas from Pichincha and Pan de Azucar volcanoes (in the front and rear arcs of the Ecuadorian Andes, respectively) were analyzed by electron microprobe for major elements and by ion microprotechnical for trace element and boron isotope compositions.
Abstract: [1] Primary melt inclusions in olivine phenocrysts (Fo74–89) of basic lavas from Pichincha and Pan de Azucar volcanoes (in the front and rear arcs of the Ecuadorian Andes, respectively) were analyzed by electron microprobe for major elements and by ion microprobe for trace element and boron isotope compositions. Although melt inclusions in the most magnesium-rich olivines contain relatively primitive magmas, their compositions are not directly linked to those of the whole rocks through a differentiation scheme. They are characterized by nepheline-normative compositions with low SiO2 contents (39.8–47.9 wt%) and unusually high CaO contents (up to 15.4 wt%), which cannot be derived from melting of a simple peridotitic mantle. We explain their formation by the presence of amphibole-bearing olivine-clinopyroxenites in the source of these melts. The trace elements patterns of the melt inclusions show the typical trace element features of arc magmas, such as enrichment in LILE and LREE, and negative anomalies in Nb and Ti. Across-arc variations of mobile versus less mobile incompatible element ratios indicate a decreasing input of a mobile phase from the slab to the mantle wedge with the distance to the trench, along with a decrease in the degree of melting. Boron isotope compositions are highly variable within each volcano (δ11B from −9.5 ± 1.3‰ to +3.5 ± 1.4‰ for the Pichincha melt inclusions and from −17.9 ± 0.8‰ to −1.9 ± 1.4‰ for the Pan de Azucar melt inclusions) and suggest trapping of isotopically heterogeneous melts. Modeling of both dehydration and fusion of the slab indicates that the Pichincha melt inclusions were formed by melting a source enriched by the addition of 1% of a heterogeneous aqueous fluid derived from the dehydration of both the sediments and the altered oceanic crust (after 74 and 76% of B loss, respectively). The phase that metasomatizes the source of the Pan de Azucar melt inclusions can be either an input of 0.1% of a heterogeneous aqueous fluid or more likely 0.5–1% of a heterogeneous silicate melt.

32 citations

Journal ArticleDOI
TL;DR: The Barombi Koto volcanic field (BKVF) is located northeast of Mount Cameroon and constitutes a portion of the Kumba graben, one of the monogenetic volcanic fields of the Cameroon volcanic line (CVL) as discussed by the authors.

32 citations

Journal ArticleDOI
TL;DR: Paleomagnetic data from the dikes and other coeval igneous units from south India provided the 90 Ma pole (latitude: 24°; longitude: 293°; A 95 = 5.9; N = 18 sites) for India.
Abstract: New geochemical and paleomagnetic results are presented on two Late Cretaceous dikes of the 85–90 Ma leucogabbroic and doleritic dikes and the 65–70 Ma dolerites in Kerala, India. The dikes are rich in incompatible elements, have fractionated patterns with light rare-earth element enrichment and are akin geochemically to Cretaceous basalts on the east coast of Madagascar. The magmas were formed at garnet lherzolite depths above the Marion plume, constituting part of a large igneous province in Madagascar. In contrast, the 65–70 Ma dolerites are moderately depleted in incompatible elements, with almost flat, rare-earth element patterns and resemble the upper formations of the Deccan Traps and the tholeiitic dikes of the Seychelles. These dolerites were formed by melting of spinel lherzolite over the Reunion plume. Paleomagnetic data from the dikes and the other coeval igneous units from south India provide the 90 Ma pole (latitude: 24°; longitude: 293°; A 95 = 5.9; N = 18 sites) for India. The 65–70 Ma dolerites possess both normal and reverse polarities, and the mean pole (latitude: 36°; longitude: 283°; A 95 = 5.7°; N = 10 sites) compares well with the Deccan superpole. Paleolatitude estimates indicate ∼5° southward migration for the Marion plume and a northward migration for the Reunion plume, in conformity with global mantle-circulation models; however, distinguishing migration of the Reunion plume from the effects of true polar wander is difficult. Furthermore, the geodynamic reconstructions extending the shear zones of southern Madagascar into south India are not tenable.

32 citations


Network Information
Related Topics (5)
Metamorphism
18.3K papers, 655.8K citations
94% related
Continental crust
11.1K papers, 677.5K citations
94% related
Basalt
18.6K papers, 805.1K citations
93% related
Mantle (geology)
26.1K papers, 1.3M citations
92% related
Zircon
23.7K papers, 786.6K citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202216
202157
202056
201960
201851