scispace - formally typeset
Search or ask a question
Topic

Incompatible element

About: Incompatible element is a research topic. Over the lifetime, 2420 publications have been published within this topic receiving 154052 citations.


Papers
More filters
Book ChapterDOI
TL;DR: Peridotite xenoliths from the Bereya alkali picrite tuff in the Vitim volcanic province of Transbaikalia consist of garnet lherzolite, garnet-spinel lhersolite and spinel lherzmanolite varieties as mentioned in this paper.
Abstract: Peridotite xenoliths from the Bereya alkali picrite tuff in the Vitim volcanic province of Transbaikalia consist of garnet lherzolite, garnet-spinel lherzolite and spinel lherzolite varieties. The volcanism is related to the Cenozoic Baikal Rift. All peridotites come from pressures of 20–23 kbar close to the garnet to spinel periodotite transition depth, and the presence of garnet can be attributed to cooling of spinel peridoties, probably during formation of the lithosphere. The peridotites show petrographic and mineral chemical evidence for infiltration by an alkaline silicate melt shortly before their transport to the Earth's surface. The melt infiltration event is indicated petrographically by clinopyroxenes which mimic melt morphologies, and post-dates outer kelyphitic rims on garnets which are attributed to an isochemical heating event within the mantle before transport to the Earth's surface. Single-mineral thermometry gives reasonable temperature estimates of 1050±50°C, whereas two-mineral methods involving clinopyroxene are falsified by secondary components in clinopyroxene introduced during the melt infiltration event. Excimer Laser-ICP-MS analysis has been performed for an extensive palette of both incompatible and compatible trace elements, and manifests the most thorough dataset available for this rock type. Orthopyroxene and garnet show only partial equilibration of trace elements with the infiltrating melt, whereas clinopyroxene and amphibole are close to equilibration with the melt and with each other. The incompatible element composition of the infiltrating melt calculated from the clinopyroxene and amphibole analyses via experimental mineral/melt partition coefficients is similar to the host alkali picrite, and probably represents a low melt fraction from a similar source during rift propagation. The chemistry and chronology of the events recorded in the xenoliths delineates the series of events expected during the influence of an expanding rift region in the upper mantle, namely the progressive erosion of the lithosphere and the episodic upward and outward propagation of melts, resulting in the evolution of the Vitim volcanic field.

4 citations

Journal ArticleDOI
TL;DR: In this article, ion microprobe measurements of major, minor, and trace element concentrations were made in individual grains of pyroxene, plagioclase, and Ca phosphates in Pomozdino and Peramiho, two eucrites previously classified as anomalous.
Abstract: — Electron and ion microprobe measurements of major, minor, and trace element concentrations were made in individual grains of pyroxene, plagioclase, and Ca phosphates in Pomozdino and Peramiho, two eucrites previously classified as anomalous. Although Pomozdino pyroxene is highly magnesian, minor and trace element concentrations in both pyroxene and plagioclase of this meteorite are similar to those in other noncumulate eucrites. High incompatible element concentrations (similar to those in Stannern) coupled with mg# typical of cumulate eucrites confirm the anomalous character of this meteorite but do not allow us to distinguish unequivocally between different possible modes of origin. Peramiho has mg# and trace element concentrations similar to main group eucrites, indicating that this meteorite most probably belongs to this group. A previously reported low incompatible element concentration for Peramiho may be due to a sampling problem.

4 citations

Journal ArticleDOI
TL;DR: In this article, a detailed study was conducted on an early Paleozoic hornblendite-quartz monzonite suite in the South China Block (SCB), where the amphibole phenocrysts were zoned with respect to major and trace elements.
Abstract: Understanding the mechanisms responsible for the interplay between mafic and felsic magmas is the key to retrieving information on their sources, and characterizing the exchange of mass between them. In order to characterize compositional and mineralogical changes in the mafic end-member during mafic-felsic magma interaction and to better understand the nature of early Paleozoic intracontinental magmatism in the South China Block (SCB), a detailed study was conducted on an early Paleozoic hornblendite-quartz monzonite suite in the SCB. The amphibole phenocrysts in the hornblendite are zoned with respect to major and trace elements. From the brown core to the light-green rim, these amphibole phenocrysts display significant increases in Si, Mg, and Mn, coupled with abrupt decreases in Al, Ti, Na, K, and most of the trace elements, but only minor variations in Ca, Fe, Co, and Ni. The light-green matrix amphiboles in the hornblendite have similar compositions to the outer rim of amphibole phenocrysts (except Na). It is important to note that the amphibole grains in the quartz monzonite have significantly higher rare-earth element (REE) contents than the amphibole grains in the hornblendite. There is convincing evidence to support a significant transfer of incompatible elements (e.g., K, Na, LILE, LREE, U, and Th) from the felsic magma to the mafic magma, such as (1) the absence of high-Ca plagioclase in hornblendite, with the majority of feldspar grains being albite (Ab96–97) and orthoclase (Or94–96), and (2) uniform Sr-Nd-Hf isotope compositions (initial 87Sr/86Sr = 0.7081–0.7098; eNd(t) = −6.8 to −6.3; weighted mean zircon eHf(t) = −8.0 to −7.4) for the hornblendite and quartz monzonite samples. It is, therefore, suggested that during mafic-felsic magma interaction, water was transferred from the quartz monzonite magma to the coeval hornblendite magma and promoted the formation of the amphibole crystals in the latter. The incompatible elements transferred from the quartz monzonite magma to the hornblendite magma were mainly incorporated into the late-crystallized anhedral phases in the hornblendite (e.g., orthoclase, sodic plagioclase, quartz, zircon, and apatite). This study suggests that water, which behaves as a supercritical fluid in most mafic-felsic magmas, may play a key role in the exchange of mass between mafic and felsic magmas, and this may be extended to the petrogenesis of biotite-amphibole aggregations in intermediate-felsic magmas.

4 citations

Journal ArticleDOI
S. J. Lippard1
TL;DR: Alkaline mafic sills of Jurassic to Cretaceous age in the Oman Mountains have coarse-grained wehrlite centres composed of olivine and zoned diopside-titanaugite with large interstitial poikilitic titanian hornblendes and titanian barian phlogopites and biotites which appear to have crystallized from a trapped, intergranular, volatile-rich liquid as discussed by the authors.
Abstract: Alkaline mafic sills of Jurassic to Cretaceous age in the Oman Mountains have coarse-grained wehrlite centres composed of olivine and zoned diopside-titanaugite with large interstitial poikilitic titanian hornblendes and titanian barian phlogopites and biotites which appear to have crystallized from a trapped, intergranular, volatile-rich liquid. The fine-grained chilled margins of the sills are olivine-poor and composed largely of titanaugite, kaersutite, sphene, and interstitial altered plagioclase. The rocks have high contents of incompatible elements (Ti, P, Sr, Ba, Zr, Nb, and others) and steeply inclined, light element enriched, REE patterns. The parent magma is estimated to have been a hydrous alkali picrite with c. 12% MgO from which the wehrlite formed by olivine accumulation. The unusual tectonic setting of the sills, in a Mesozoic continental margin sequence emplaced in an Alpine thrust belt, is noted.

4 citations

Journal ArticleDOI
TL;DR: The results of numerical modeling of the two-component thermochemical convection in the mantle are given in this paper, where the times of partial mixing of layers depending on the values of these parameters are calculated.
Abstract: Basalts of mid-ocean ridges are depleted in incompatible elements that have passed into the continental crust. Basalts of hot spots (oceanic islands and igneous provinces) have a chemical composition close to the primary uniform mantle and are even somewhat enriched in incompatible elements. At present, for explaining the reason for this difference, there are different qualitative schemes of differentiation and mixing of substance in the mantle. In the present work, the results of numerical modeling of the two-component thermochemical convection in the mantle are given. They quantitatively demonstrate with which parameters in the mantle the layers of different chemical composition can remain unchanged. Models with different density contrasts and with variable viscosity are examined. The times of the partial mixing of layers depending on the values of these parameters are calculated. For retaining the stratified mantle for two Ga, the density contrast must be more than 2%. If the layer D″ contains a substance of the primary composition, then, its upper boundary can be the place of origin of the plumes that feed the hot spots of the Earth. The enrichment in the incompatible elements and the variety of the chemical composition of hot spots can be explained by the mixing of the substance of the slowly eroded D″ layer and the oceanic crust accumulated in it.

4 citations


Network Information
Related Topics (5)
Metamorphism
18.3K papers, 655.8K citations
94% related
Continental crust
11.1K papers, 677.5K citations
94% related
Basalt
18.6K papers, 805.1K citations
93% related
Mantle (geology)
26.1K papers, 1.3M citations
92% related
Zircon
23.7K papers, 786.6K citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202216
202157
202056
201960
201851