scispace - formally typeset
Search or ask a question
Topic

Incompatible element

About: Incompatible element is a research topic. Over the lifetime, 2420 publications have been published within this topic receiving 154052 citations.


Papers
More filters
Journal ArticleDOI
29 Mar 2012-Nature
TL;DR: The 142Nd/144Nd ratio of the Earth is greater than the solar ratio as inferred from chondritic meteorites, which challenges a fundamental assumption of modern geochemistry—that the composition of the silicate Earth is ‘chondritic’, meaning that it has refractory element ratios identical to those found in chondrites.
Abstract: The (142)Nd/(144)Nd ratio of the Earth is greater than the solar ratio as inferred from chondritic meteorites, which challenges a fundamental assumption of modern geochemistry--that the composition of the silicate Earth is 'chondritic', meaning that it has refractory element ratios identical to those found in chondrites. The popular explanation for this and other paradoxes of mantle geochemistry, a hidden layer deep in the mantle enriched in incompatible elements, is inconsistent with the heat flux carried by mantle plumes. Either the matter from which the Earth formed was not chondritic, or the Earth has lost matter by collisional erosion in the later stages of planet formation.

112 citations

Journal ArticleDOI
TL;DR: In this article, the origin of large mantle dunites is investigated by detailed geochemical traverses and with single samples, and it is shown that the largest dunites in the mantle section appear to have little to do with the main constructional stage of the spreading center.
Abstract: [1] The origin of large mantle dunites is considered critical for models of melt migration in the mantle. Their presence is not compatible with formation synchronous to a fracture-related melt transport event. In models of porous channel systems for melt transport, they represent a strongly coalesced, high-flux conduit. Dunites from the lower parts of the mantle sections in the Bay of Islands Ophiolite are investigated by detailed geochemical traverses and with single samples. Dunites tend to cluster in the sense that several smaller dunites are associated with larger dunites or several dunites occur together. The chemistry of the large bodies is very depleted (Mg# in olivine 92–94, CaO in olivine 0.05–0.08%, Cr# [100 Cr/(Cr + Al)] in spinel 65–85, TiO2 in clinopyroxene 0.01–0.04%, Sm/Yb 0.2 to 0.7 relative to N-MORB). Detailed traverses across the dunites commonly show a decrease of NiO in olivine associated with an increase in the Mg# along the harzburgite-dunite boundary. Internally, dunite bodies are nearly homogeneous. Thickness of dunite bodies correlates with chemistry, in particular Mg# in olivine and probably Cr# and ferric iron in spinel, but not NiO in olivine. Incompatible element data for the largest dunites argue for their formation by an extremely depleted, high Mg# (boninitic?) melt. We suggest that integrated refractory melt: rock ratios in the largest dunites (up to 40 m) were below 8, because of a low abundance of refractory melts in the crust, and a lack of a systematic change of NiO in olivine with dunite width or across single dunites in detailed chemical traverses. Tectonically, the formation of depleted melts in a late stage of the spreading center is indicated. Their melt feeders failed when approaching the base of the mantle lithosphere and generated large dunites as replacive bodies. The latest expression of this magmatism are orthopyroxenite dykes, in part draining the large dunites. Since the large majority of all deeper mantle dunites are of refractory chemical nature and not akin to MORB, we caution as universally taking large dunite bodies to represent deep-reaching channels with high melt flux and to take the abundance and size distribution of all dunites in an ophiolitic mantle section to infer melt migration mechanisms. In the Bay of Islands Ophiolite, the largest dunites in the mantle section appear to have little to do with the main constructional stage of the spreading center.

112 citations

Journal ArticleDOI
TL;DR: The Fiskenaesset complex and associated volcanic rocks, southern West Greenland, provide new constraints on the petrogenesis and geodynamic setting of the complex as discussed by the authors, which appears to have been emplaced as multiple sills of magma and crystal mush into oceanic crust (tholeiitic basalts and gabbros).

111 citations

Journal ArticleDOI
12 Jun 2003-Nature
TL;DR: Independent atomistic computer simulations indicate that noble gases can be considered as species of ‘zero charge’ incorporated at crystal lattice sites, which provides a theoretical framework with which to model noble-gas geochemistry as a function of residual mantle mineralogy.
Abstract: Noble-gas geochemistry is an important tool for understanding planetary processes from accretion to mantle dynamics and atmospheric formation1,2,3,4. Central to much of the modelling of such processes is the crystal–melt partitioning of noble gases during mantle melting, magma ascent and near-surface degassing5. Geochemists have traditionally considered the ‘inert’ noble gases to be extremely incompatible elements, with almost 100 per cent extraction efficiency from the solid phase during melting processes. Previously published experimental data on partitioning between crystalline silicates and melts has, however, suggested that noble gases approach compatible behaviour, and a significant proportion should therefore remain in the mantle during melt extraction5,6,7,8. Here we present experimental data to show that noble gases are more incompatible than previously demonstrated, but not necessarily to the extent assumed or required by geochemical models. Independent atomistic computer simulations indicate that noble gases can be considered as species of ‘zero charge’ incorporated at crystal lattice sites. Together with the lattice strain model9,10, this provides a theoretical framework with which to model noble-gas geochemistry as a function of residual mantle mineralogy.

110 citations

Journal ArticleDOI
TL;DR: A comprehensive review of low-Ti subduction-related lavas from modern intraoceanic arc-backarc systems, and of lowTi ophiolites shows a complete compositional range from boninite to island arc basalts as mentioned in this paper.

110 citations


Network Information
Related Topics (5)
Metamorphism
18.3K papers, 655.8K citations
94% related
Continental crust
11.1K papers, 677.5K citations
94% related
Basalt
18.6K papers, 805.1K citations
93% related
Mantle (geology)
26.1K papers, 1.3M citations
92% related
Zircon
23.7K papers, 786.6K citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202216
202157
202056
201960
201851