scispace - formally typeset
Search or ask a question
Topic

Incompressible flow

About: Incompressible flow is a research topic. Over the lifetime, 10646 publications have been published within this topic receiving 323234 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that the derived form of the finite difference Jacobian can prevent nonlinear computational instability and thereby permit long-term numerical integrations, which is not the case in finite difference analogues of the equation of motion for two-dimensional incompressible flow.

1,328 citations

Journal ArticleDOI
TL;DR: In this paper, the axisymmetric turbulent incompressible and isothermal jet was investigated by use of linearized constant-temperature hot-wire anemometers and the quantities measured include mean velocity, turbulence stresses, intermittency, skewness and flatness factors, correlations, scales, low-frequency spectra and convection velocity.
Abstract: The axisymmetric turbulent incompressible and isothermal jet was investigated by use of linearized constant-temperature hot-wire anemometers. It was established that the jet was truly self-preserving some 70 diameters downstream of the nozzle and most of the measurements were made in excess of this distance. The quantities measured include mean velocity, turbulence stresses, intermittency, skewness and flatness factors, correlations, scales, low-frequency spectra and convection velocity. The r.m.s. values of the various velocity fluctuations differ from those measured previously as a result of lack of self-preservation and insufficient frequency range in the instrumentation of the previous investigations. It appears that Taylor's hypothesis is not applicable to this flow, but the use of convection velocity of the appropriate scale for the transformation from temporal to spatial quantities appears appropriate. The energy balance was calculated from the various measured quantities and the result is quite different from the recent measurements of Sami (1967), which were obtained twenty diameters downstream from the nozzle. In light of these measurements some previous hypotheses about the turbulent structure and the transport phenomena are discussed. Some of the quantities were obtained by two or more different methods, and their relative merits and accuracy are assessed.

1,287 citations

Book
11 Aug 2005
TL;DR: In this article, Jacobi polynomials Gauss-type integration Collocation differentiation Co discontinuous expansion bases are used to simulate incompressible flows in one-dimensional expansion bases.
Abstract: Introduction Fundamental concepts in one dimension Multi-dimensional expansion bases Multi-dimensional formulations Diffusion equation Advection and advection-diffusion Non-conforming elements Algorithms for incompressible flows Incompressible flow simulations:verification and validation Hyperbolic conservation laws Appendices Jacobi polynomials Gauss-Type integration Collocation differentiation Co discontinuous expansion bases Characteristic flux decomposition References Index

1,278 citations

Book
01 Jan 1979
TL;DR: In this paper, the Equations of Motion (EOM) and potential flow and slightly viscous flow are used to describe the gas flow in one dimension in one-dimensional space.
Abstract: Contents: The Equations of Motion.- Potential Flow and Slightly Viscous Flow.- Gas Flow in One Dimension.- Vector Identities.- Index.

1,219 citations

Journal ArticleDOI
TL;DR: In this article, the RNG κ-e turbulence model derived by Yakhot and Orszag (1986) based on the Renormalization Group theory has been modified and applied to variable-density engine flows in the present study.
Abstract: The RNG κ-e turbulence model derived by Yakhot and Orszag (1986) based on the Renormalization Group theory has been modified and applied to variable-density engine flows in the present study. The original RNG-based turbulence transport approximations were developed formally for an incompressible flow. In order to account for flow compressibility the RNG e-equation is modified and closed through an isotropic rapid distortion analysis. Computations were made of engine compressing/expanding flows and the results were compared with available experimental observations in a production diesel engine geometry. The modified RNG κ-e model was also applied to diesel spray combustion computations. It is shown that the use of the RNG model is warranted for spray combustion modeling since the ratio of the turbulent to mean-strain time scales is appreciable due to spray-generated mean flow gradients, and the model introduces a term to account for these effects. Large scale flow structures are predicted which ar...

1,200 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
92% related
Boundary layer
64.9K papers, 1.4M citations
90% related
Turbulence
112.1K papers, 2.7M citations
88% related
Partial differential equation
70.8K papers, 1.6M citations
88% related
Boundary value problem
145.3K papers, 2.7M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202331
202264
2021237
2020230
2019223
2018215