scispace - formally typeset
Search or ask a question
Topic

Indentation

About: Indentation is a research topic. Over the lifetime, 13002 publications have been published within this topic receiving 340476 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simple theory of hardness is given, based on the theoretical work of Hencky and Ishlinsky, which explains a number of empirical relations observed in dynamic hardness measurements, and reproduces the calibration characteristics of the rebound scleroscope.
Abstract: When a hard spherical indenter is pressed into the surface of a softer metal, plastic flow of the metal specimen occurs and an indentation is formed. When the indenter is removed it is found that the permanent indentation is spherical in shape, but that its radius of curvature is greater than that of the indenter. It is generally held that this 'shallowing' effect is due to the release of elastic stresses in the material around the indentation. It is clear that if the recovery is truly elastic it should be reversible and that a second application and removal of the indenter under the original load should not change the size or shape of the indentation. Experiments show that this is the case. This means that when the original load is reapplied, the deformation of the indenter and the recovered indentation is elastic and should conform with Hertz's equations for the elastic deformation of spherical surfaces. Measurements show that there is, in fact, close agreement between the observed deformation and that calculated from Hertz's equations. These results have been applied to the case of indentations formed in a metal surface by an impacting indenter. The energy involved in the elastic recovery of the impacting surfaces is found to account for the energy of rebound of the indenter. This analysis explains a number of empirical relations observed in dynamic hardness measurements, and, in particular, reproduces the calibration characteristics of the rebound scleroscope. The results also show that for very soft metals the dynamic hardness is very much higher than the static hardness, and it is suggested that in rapid deformation of soft metals, forces of a quasi-viscous nature are involved. In the third part of the paper a simple theory of hardness is given, based on the theoretical work of Hencky and Ishlinsky. It is shown experimentally that for a material incapable of appreciable work-hardening, the mean pressure P$\_{m}$ required to produce plastic yielding is related to the elastic limit Y of the material by a relation P$\_{m}$ = cY, where c is a constant having a value between 2$\cdot $6 and 3. An empirical method is described which takes into account the work-hardening produced in metals by the indentation process itself. This results in a general relation between hardness measurements and the stress-strain characteristic of the metal, and there is close agreement between the theory and the observed results. In addition, the theory explains the empirical laws of Meyer.

560 citations

Journal ArticleDOI
TL;DR: On average, YM values for soft tissues are consistently lower when obtained by indentation deformations, and the implications and potential impact of this finding are discussed.
Abstract: In this review, we compare the reported values of Young's modulus (YM) obtained from indentation and tensile deformations of soft biological tissues. When the method of deformation is ignored, YM values for any given tissue typically span several orders of magnitude. If the method of deformation is considered, then a consistent and less ambiguous result emerges. On average, YM values for soft tissues are consistently lower when obtained by indentation deformations. We discuss the implications and potential impact of this finding.

559 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the creep response of high-purity indium, from room temperature to 75 °C, using a variety of depth-sensing indentation techniques.
Abstract: Using a variety of depth-sensing indentation techniques, the creep response of high-purity indium, from room temperature to 75 °C, was measured. The dependence of the hardness on the variables of indentation strain rate (stress exponent for creep (n)) and temperature (apparent activation energy for creep (Q)) and the existence of a steady-state behavior in an indentation test with a Berkovich indenter were investigated. It was shown for the first time that the indentation strain rate (-este-/h) could be held constant during an experiment using a Berkovich indenter, by maintaining the loading rate divided by the load (-este-/P) constant. The apparent activation energy for indentation creep was found to be 78 kJ/mol, in accord with the activation energy for self-diffusion in the material. Finally, by performing -este-/P change experiments, it was shown that a steady-state path independent of hardness could be reached in an indentation test with a geometrically similar indenter.

558 citations

Journal ArticleDOI
TL;DR: In this article, the influence of the included angle of conical indenters and the friction coefficient on the force penetration curves was studied, based on a finite element analysis on elasto-plastic materials.

549 citations

Journal ArticleDOI
TL;DR: In this article, it is shown that indentation hardness of ductile materials is essentially a measure of their plastic properties, rather than the brittle properties of the material. And the Mohs scratch hardness scale is used to measure the plastic properties of a material.
Abstract: This review is concerned with the basic physical meaning of hardness. It is shown that indentation hardness of ductile materials is essentially a measure of their plastic properties. With brittle solids the high hydrostatic pressures around the deformed region are often sufficient to inhibit brittle fracture. Under these conditions both indentation and scratch hardness are essentially a measure of the plastic rather than the brittle properties of the solid. This provides a simple physical basis for the Mohs scratch hardness scale

547 citations


Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
89% related
Ultimate tensile strength
129.2K papers, 2.1M citations
89% related
Coating
379.8K papers, 3.1M citations
86% related
Thin film
275.5K papers, 4.5M citations
82% related
Finite element method
178.6K papers, 3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023517
20221,124
2021457
2020510
2019566
2018526