scispace - formally typeset
Search or ask a question
Topic

Indium phosphide

About: Indium phosphide is a research topic. Over the lifetime, 3244 publications have been published within this topic receiving 39054 citations. The topic is also known as: Indium(III) phosphide.


Papers
More filters
Journal ArticleDOI
Xiangfeng Duan1, Yu Huang1, Yi Cui1, Jianfang Wang1, Charles M. Lieber1 
04 Jan 2001-Nature
TL;DR: The assembly of functional nanoscale devices from indium phosphide nanowires, the electrical properties of which are controlled by selective doping are reported, and electric-field-directed assembly can be used to create highly integrated device arrays from nanowire building blocks.
Abstract: Nanowires and nanotubes carry charge and excitons efficiently, and are therefore potentially ideal building blocks for nanoscale electronics and optoelectronics. Carbon nanotubes have already been exploited in devices such as field-effect and single-electron transistors, but the practical utility of nanotube components for building electronic circuits is limited, as it is not yet possible to selectively grow semiconducting or metallic nanotubes. Here we report the assembly of functional nanoscale devices from indium phosphide nanowires, the electrical properties of which are controlled by selective doping. Gate-voltage-dependent transport measurements demonstrate that the nanowires can be predictably synthesized as either n- or p-type. These doped nanowires function as nanoscale field-effect transistors, and can be assembled into crossed-wire p-n junctions that exhibit rectifying behaviour. Significantly, the p-n junctions emit light strongly and are perhaps the smallest light-emitting diodes that have yet been made. Finally, we show that electric-field-directed assembly can be used to create highly integrated device arrays from nanowire building blocks.

3,280 citations

Journal ArticleDOI
24 Aug 2001-Science
TL;DR: The fundamental photoluminescence properties of individual, isolated indium phosphide nanowires were characterized to define their potential for optoelectronics and create polarization-sensitive nanoscale photodetectors that may prove useful in integrated photonic circuits, optical switches and interconnects, near-field imaging, and high-resolution detectors.
Abstract: We have characterized the fundamental photoluminescence (PL) properties of individual, isolated indium phosphide (InP) nanowires to define their potential for optoelectronics. Polarization-sensitive measurements reveal a striking anisotropy in the PL intensity recorded parallel and perpendicular to the long axis of a nanowire. The order-of-magnitude polarization anisotropy was quantitatively explained in terms of the large dielectric contrast between these free-standing nanowires and surrounding environment, as opposed to quantum confinement effects. This intrinsic anisotropy was used to create polarization-sensitive nanoscale photodetectors that may prove useful in integrated photonic circuits, optical switches and interconnects, near-field imaging, and high-resolution detectors.

1,798 citations

Journal ArticleDOI
20 Nov 2008-Nature
TL;DR: It is shown that the crystal structure of indium phosphide (InP) nanowires can be controlled by using impurity dopants, and it is demonstrated that zinc decreases the activation barrier for two-dimensional nucleation growth of zinc-blende InP and therefore promotes crystallization of the InPnanowires in the zinc- Blende, instead of the commonly found wurtzite, crystal structure.
Abstract: In most superconductors, the pairing-up of electrons responsible for resistance-free conductivity is driven by vibrations of the solid's crystal lattice. But there are other superconducting materials in which the 'glue' responsible for binding electrons is thought to have a very different origin: quantum fluctuations of spin or charge. An unusually 'violent' generalization of such a pairing mechanisms, in which spin and charge instabilities combine forces, has been identified in the unconventional superconductor CeRhIn5. These intimately coupled fluctuations significantly disrupt the flow of electrons in their normal unpaired state, yet also provide the quantum-mechanical glue necessary for generating superconducting pairs. In this paper, the crystal structure and stacking fault density of semiconducting nanowires composed of the same material are controlled by doping, leading to twinning superlattices. Periodic arrays of rotational dislocations lead to crystal heterostructures in indium phosphide and gallium phosphide nanowires. Semiconducting nanowires offer the possibility of nearly unlimited complex bottom-up design1,2, which allows for new device concepts3,4. However, essential parameters that determine the electronic quality of the wires, and which have not been controlled yet for the III–V compound semiconductors, are the wire crystal structure and the stacking fault density5. In addition, a significant feature would be to have a constant spacing between rotational twins in the wires such that a twinning superlattice is formed, as this is predicted to induce a direct bandgap in normally indirect bandgap semiconductors6,7, such as silicon and gallium phosphide. Optically active versions of these technologically relevant semiconductors could have a significant impact on the electronics8 and optics9 industry. Here we show first that we can control the crystal structure of indium phosphide (InP) nanowires by using impurity dopants. We have found that zinc decreases the activation barrier for two-dimensional nucleation growth of zinc-blende InP and therefore promotes crystallization of the InP nanowires in the zinc-blende, instead of the commonly found wurtzite, crystal structure10. More importantly, we then demonstrate that we can, once we have enforced the zinc-blende crystal structure, induce twinning superlattices with long-range order in InP nanowires. We can tune the spacing of the superlattices by changing the wire diameter and the zinc concentration, and we present a model based on the distortion of the catalyst droplet in response to the evolution of the cross-sectional shape of the nanowires to quantitatively explain the formation of the periodic twinning.

640 citations

Journal ArticleDOI
TL;DR: Growth of indium phosphide (InP) quantum wires having diameters in the strong-confinement regime are reported and a comparison of their bandgaps with those previously reported for InP quantum dots are compared.
Abstract: The size dependence of the bandgap is the most identifiable aspect of quantum confinement in semiconductors; the bandgap increases as the nanostructure size decreases. The bandgaps in one-dimensional (1D)-confined wells, 2D-confined wires, and 3D-confined dots should evolve differently with size as a result of the differing dimensionality of confinement. However, no systematic experimental comparisons of analogous 1D, 2D or 3D confinement systems have been made. Here we report growth of indium phosphide (InP) quantum wires having diameters in the strong-confinement regime, and a comparison of their bandgaps with those previously reported for InP quantum dots. We provide theoretical evidence to establish that the quantum confinement observed in the InP wires is weakened to the expected extent, relative to that in InP dots, by the loss of one confinement dimension. Quantum wires sometimes behave as strings of quantum dots, and we propose an analysis to generally distinguish quantum-wire from quantum-dot behaviour.

372 citations

Journal ArticleDOI
TL;DR: In this article, the growth of a grating perpendicular to the polarization vector consisting of nearly wavelength-sized periodic lines was observed with an increasing number of pulses per spot, up to 100, and the formation of equally oriented ripples with a spatial period close to half the laser wavelength.
Abstract: Laser-induced periodic surface structures (LIPSS; ripples) with different spatial characteristics have been observed after irradiation of single-crystalline indium phosphide (c-InP) with multiple linearly polarized femtosecond pulses (130fs, 800nm) in air. With an increasing number of pulses per spot, N, up to 100, a characteristic evolution of two different types of ripples has been observed, i.e., (i) the growth of a grating perpendicular to the polarization vector consisting of nearly wavelength-sized periodic lines and (ii), in a specific pulse number regime (N=5–30), the additional formation of equally oriented ripples with a spatial period close to half of the laser wavelength. For pulse numbers higher than 50, the formation of micrometer-spaced grooves has been found, which are oriented perpendicular to the ripples. These topographical surface alterations are discussed in the frame of existing LIPSS theories.

345 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
90% related
Transistor
138K papers, 1.4M citations
87% related
Photoluminescence
83.4K papers, 1.8M citations
86% related
Band gap
86.8K papers, 2.2M citations
85% related
Substrate (electronics)
116.1K papers, 1.3M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202344
2022107
202148
202080
201992
2018111