scispace - formally typeset
Search or ask a question
Topic

Indium tin oxide

About: Indium tin oxide is a research topic. Over the lifetime, 17857 publications have been published within this topic receiving 402127 citations. The topic is also known as: indium tin oxide.


Papers
More filters
Journal ArticleDOI
TL;DR: A two-step spray-coating method for producing large-scale, smooth and flexible silver nanowire-poly3,4-ethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS) composite electrodes displaying good electromechanical flexibility for use in flexible optoelectronic applications is demonstrated.
Abstract: For the realization of high-efficiency flexible optoelectronic devices, transparent electrodes should be fabricated through a low-temperature process and have the crucial feature of low surface roughness. In this paper, we demonstrated a two-step spray-coating method for producing large-scale, smooth and flexible silver nanowire (AgNW)–poly3,4-ethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS) composite electrodes. Without the high-temperature annealing process, the conductivity of the composite film was improved via the lamination of highly conductive PEDOT:PSS modified by dimethyl sulfoxide (DMSO). Under the room temperature process condition, we fabricated the AgNW–PEDOT:PSS composite film showing an 84.3% mean optical transmittance with a 10.76 Ω sq−1 sheet resistance. The figure of merit ΦTC was higher than that obtained from the indium tin oxide (ITO) films. The sheet resistance of the composite film slightly increased less than 5.3% during 200 cycles of tensile and compression folding, displaying good electromechanical flexibility for use in flexible optoelectronic applications.

310 citations

Journal ArticleDOI
TL;DR: In this article, a new type of oxygen species is formed by Oxidation of surface Sn-OH to surface SnO• units is proposed to account for observed changes in O-plasma treated ITO; this proposal can explain a wide variety of previously described ITO surface activation results.
Abstract: Oxygen plasma treatment of indium tin oxide (ITO) results in a change in work function and electron affinity by ∼0.5 eV. This change correlates with the measured increase in injected current in simple “hole-only” organic devices with O-plasma treated ITO electrodes. Neither addition nor removal of surface hydroxyl functionality accounts for the observed work function and electron affinity changes. X-ray and ultraviolet photoelectron spectroscopies show a new type of oxygen species is formed. Oxidation of surface Sn-OH to surface Sn-O• units is proposed to account for the observed changes in O-plasma treated ITO; this proposal can explain a wide variety of previously described ITO surface activation results.

309 citations

Journal ArticleDOI
TL;DR: In this paper, the status and prospects for further development of reduced or indium-free transparent conducting oxide (TCO) materials for use in practical thin-film transparent electrode applications such as liquid crystal displays are presented.

307 citations

Journal ArticleDOI
TL;DR: Coating copper nanowires to a ratio of 2:1 Cu:Ni gave them a neutral gray color, making them more suitable for use in displays and electrochromic windows, and make cupronickel nanoweires a promising alternative for the sustainable, efficient production of transparent conductors.
Abstract: Nanowires of copper can be coated from liquids to create flexible, transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these nanowire films is that copper is prone to oxidation. It was hypothesized that the resistance to oxidation could be improved by coating copper nanowires with nickel. This work demonstrates a method for synthesizing copper nanowires with nickel shells as well as the properties of cupronickel nanowires in transparent conducting films. Time- and temperature-dependent sheet resistance measurements indicate that the sheet resistance of copper and silver nanowire films will double after 3 and 36 months at room temperature, respectively. In contrast, the sheet resistance of cupronickel nanowires containing 20 mol % nickel will double in about 400 years. Coating copper nanowires to a ratio of 2:1 Cu:Ni gave them a neutral gray color, making them more suitable for use in displays and electrochromic windows. These properties, and the fact that copper and nickel are 1000 times more abundant than indium or silver, make cupronickel nanowires a promising alternative for the sustainable, efficient production of transparent conductors.

306 citations

Journal ArticleDOI
TL;DR: Graphene/NW films with a sheet resistance comparable to that of the intrinsic resistance of graphene have been obtained and tested as a transparent electrode replacing indium tin oxide films in electrochromic (EC) devices.
Abstract: Polycrystalline graphene grown by chemical vapor deposition (CVD) on metals and transferred onto arbitrary substrates has line defects and disruptions such as wrinkles, ripples, and folding that adversely affect graphene transport properties through the scattering of the charge carriers. It is found that graphene assembled with metal nanowires (NWs) dramatically decreases the resistance of graphene films. Graphene/NW films with a sheet resistance comparable to that of the intrinsic resistance of graphene have been obtained and tested as a transparent electrode replacing indium tin oxide films in electrochromic (EC) devices. The successful integration of such graphene/NW films into EC devices demonstrates their potential for a wide range of optoelectronic device applications.

306 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
95% related
Carbon nanotube
109K papers, 3.6M citations
93% related
Graphene
144.5K papers, 4.9M citations
93% related
Silicon
196K papers, 3M citations
91% related
Oxide
213.4K papers, 3.6M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023343
2022730
2021537
2020684
2019804
2018838