scispace - formally typeset
Search or ask a question
Topic

Indium tin oxide

About: Indium tin oxide is a research topic. Over the lifetime, 17857 publications have been published within this topic receiving 402127 citations. The topic is also known as: indium tin oxide.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a transparent triboelectric nanogeneartor (TENG) was used for simultaneously harvesting solar and raindrop energy when either or both of them are available in our living environment.

222 citations

Journal ArticleDOI
TL;DR: In this paper, a flexible semitransparent substrate for inverted-structure OPVs is presented, which is based on a highconductivity PEDOT:PSS layer and is coated with zinc oxide.
Abstract: carbon nanotubes [20] with varying success. However, only the report in Ref. [11] has demonstrated the potential to be sufficiently scaleable for the final substrate to be produced at a speed and cost allowing for its consideration as a serious candidate for R2R printing. Here we present a new flexible semitransparent substrate which, when used in the preparation of OPVs, provides similar performances to analogous modules prepared on ITOcovered substrates. [1] This “flextrode” substrate is suitable for inverted-structure OPVs and is based on a high-conductivity PEDOT:PSS layer, which is coated with zinc oxide. For larger areas a flexo-printed silver grid reduces sheet resistance. We demonstrate how the ITO-free electrode material can be processed at high speed by printing several layers at the same time using inline printing and coating. We show that a length of 1000 m is easily manufactured within a few hours having full 2-dimensional registration of the printed pattern. We see this as the first real candidate for a mass producible replacement for ITO, and to promote the use of such substrates in academic research, this substrate is made freely available.

222 citations

Journal ArticleDOI
TL;DR: In this article, a planar heterojunction (PHJ) and bulk heter-junction organic photovoltaic (OPV) cells were investigated using transparent electrodes composed of ultrathin, unpatterned metal films.
Abstract: Transparent electrodes composed of ultrathin, unpatterned metal films are investigated in planar heterojunction (PHJ) and bulk heterojunction organic photovoltaic (OPV) cells. Optimal electrode composition and thickness are deduced from electrical and optical models and experiments, enabling a PHJ-OPV cell to be realized using a silver anode, achieving power conversion efficiency parity with an analogous cell that uses an indium tin oxide anode. Beneficial aspects of smooth, unpatterned metal films as transparent electrodes in OPV cells are also discussed in the text.

221 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared the impact of the thickness of indium tin oxide (ITO) coated optical fibers on surface plasmon resonances and lossy mode resonances.
Abstract: Surface plasmon resonances and lossy mode resonances (LMRs) can be generated with indium tin oxide (ITO) coated optical fibers. Both phenomena are analyzed and compared. LMRs present important advantages: they do not require a specific polarization of light, it is possible to generate multiple attenuation bands in the transmission spectrum, and the sensitivity of the device to external parameters can be tuned. The key parameter is the thickness of the ITO coating. The study is supported with both theoretical and experimental results. The main purposes are sensing and generation of multiple-wavelength filters.

220 citations

Journal ArticleDOI
TL;DR: The reduced pressure synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) with sheet-like morphology has been achieved with the introduction of an amphiphilic triblock copolymer into the oxidant thin film as discussed by the authors.
Abstract: The reduced pressure synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) with sheet-like morphology has been achieved with the introduction of an amphiphilic triblock copolymer into the oxidant thin film. Addition of the copolymer not only results in an oxidant thin film which remains liquid-like under reduced pressure but also induces structured growth during film formation. PEDOT films were polymerized using the vacuum vapor phase polymerization (VPP) technique, in which we show that maintaining a liquid-like state for the oxidant is essential. The resulting conductivity is equivalent to commercially available indium tin oxide (ITO) with concomitant optical transmission values. PEDOT films can be produced with a variety of thicknesses across a range of substrate materials from plastics to metals to ceramics, with sheet resistances down to 45 Ω/□ (ca. 3400 S·cm–1), and transparency in the visible spectrum of >80% at 65 nm thickness. This compares favorably to ITO and its currently touted replacements.

220 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
95% related
Carbon nanotube
109K papers, 3.6M citations
93% related
Graphene
144.5K papers, 4.9M citations
93% related
Silicon
196K papers, 3M citations
91% related
Oxide
213.4K papers, 3.6M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023343
2022730
2021537
2020684
2019804
2018838