scispace - formally typeset
Search or ask a question
Topic

Indium tin oxide

About: Indium tin oxide is a research topic. Over the lifetime, 17857 publications have been published within this topic receiving 402127 citations. The topic is also known as: indium tin oxide.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an effective antireflection (AR) coating, minimized recombination loss, and good Ohmic contacts are particularly important for next generation photovoltaics, hence, demand an efficiency boosting mechanism in order to render solar energy cost competitive with conventional sources of electricity.
Abstract: Global-warming issues coupled with high oil prices have become a major driving force for the use of advanced solar power technology, where a key component lies in the development of high-efficiency and low-cost photovoltaic cells. Next generation photovoltaics, hence, demand an efficiency-boosting mechanism in order to render solar energy cost competitive with conventional sources of electricity. Fundamentally, the conversion efficiency of a solar cell depends on the photon absorption, carrier separation, and carrier collection. Therefore, an effective antireflection (AR) coating, minimized recombination loss, and good Ohmic contacts are particularly important. Metal grids that inevitably block the transmission of solar energy also require optimization in order to reduce the series resistance. The trade-off between the electrode and the AR coating areas is one of the efficiency-limiting factors in a conventional solar cell. The conventional AR coating is usually composed of a quarter wavelength stack of dielectrics with different refractive indices. Broad angular and spectral AR is achievable at the price of multiple layers. Over the past few years, versatile subwavelength structures (SWS) have emerged as promising candidates for AR coatings, due to the characteristics of zero-order gratings, or the so-called moth-eye effects. However, the fabrication costs, which involve either electron-beam (e-beam) lithography or various etching processes, can be significant. In addition, the resulting surface-recombination loss due to dry or wet etching could further hinder the applications of SWS in commercial solar cells. Recently, multiple studies have been carried out on indium tin oxide (ITO), titanium dioxide (TiO2), and silicon dioxide (SiO2) nanostructures employing oblique-angle deposition methods, where the refractive indices of the nanoporous materials can be engineered by adjusting the air volume ratio. Still, thematerials requiremultiple layers to effectively suppress the Fresnel reflection.

169 citations

Journal ArticleDOI
07 May 2012-ACS Nano
TL;DR: Atomic layer deposition is utilized to coat a passivation layer of aluminum-doped zinc oxide (AZO) and aluminum oxide onto electrospun copper nanofibers and remarkably enhance their durability.
Abstract: Copper nanofiber networks, which possess the advantages of low cost, moderate flexibility, small sheet resistance, and high transmittance, are one of the most promising candidates to replace indium tin oxide films as the premier transparent electrode. However, the chemical activity of copper nanofibers causes a substantial increase in the sheet resistance after thermal oxidation or chemical corrosion of the nanofibers. In this work, we utilize atomic layer deposition to coat a passivation layer of aluminum-doped zinc oxide (AZO) and aluminum oxide onto electrospun copper nanofibers and remarkably enhance their durability. Our AZO–copper nanofibers show resistance increase of remarkably only 10% after thermal oxidation at 160 °C in dry air and 80 °C in humid air with 80% relative humidity, whereas bare copper nanofibers quickly become insulating. In addition, the coating and baking of the acidic PEDOT:PSS layer on our fibers increases the sheet resistance of bare copper nanofibers by 6 orders of magnitude,...

169 citations

Journal ArticleDOI
31 Oct 2012-ACS Nano
TL;DR: This report describes the efforts into the fabrication of the first reported all-carbon solar cell in which all components (the anode, active layer, and cathode) are carbon based.
Abstract: Carbon allotropes possess unique and interesting physical, chemical, and electronic properties that make them attractive for next-generation electronic devices and solar cells. In this report, we describe our efforts into the fabrication of the first reported all-carbon solar cell in which all components (the anode, active layer, and cathode) are carbon based. First, we evaluate the active layer, on standard electrodes, which is composed of a bilayer of polymer sorted semiconducting single-walled carbon nanotubes and C60. This carbon-based active layer with a standard indium tin oxide anode and metallic cathodehasamaximumpowerconversionefficiencyof0.46%underAM1.5Sunillumination.Next,wedescribeoureffortsinreplacingtheelectrodeswith carbon-based electrodes, to demonstrate the first all-carbon solar cell, and discuss the remaining challenges associated with this process.

169 citations

Journal ArticleDOI
TL;DR: This review surveys the literature on TCO modification with phosphonic acids (PAs), which has increasingly been used to engineer these interfacial properties in organic-semiconductor devices and discusses the relevance of TCO surface modification to organic electronics.
Abstract: Transparent conducting oxides (TCOs), such as indium tin oxide and zinc oxide, play an important role as electrode materials in organic-semiconductor devices. The properties of the inorganic–organic interface—the offset between the TCO Fermi level and the relevant transport level, the extent to which the organic semiconductor can wet the oxide surface, and the influence of the surface on semiconductor morphology—significantly affect device performance. This review surveys the literature on TCO modification with phosphonic acids (PAs), which has increasingly been used to engineer these interfacial properties. The first part outlines the relevance of TCO surface modification to organic electronics, surveys methods for the synthesis of PAs, discusses the modes by which they can bind to TCO surfaces, and compares PAs to alternative organic surface modifiers. The next section discusses methods of PA monolayer deposition, the kinetics of monolayer formation, and structural evidence regarding molecular orientati...

169 citations

Journal ArticleDOI
TL;DR: In this paper, a solution-based process for the deposition of transparent conducting oxides through spin-coating or inkjet printing under ambient conditions was developed, which was shown to be smooth and uniform with an amorphous structure.
Abstract: We have developed a general and low-cost, solution-based process that is suitable for the deposition of transparent conducting oxides through spin-coating or inkjet printing under ambient conditions. Highly transparent (-95% in the visible portion) zinc tin oxide semiconducting thin films were deposited by spin coating. The deposited films were found to be smooth and uniform with an amorphous structure. Enhancement-mode metal-insulator-semiconductor field-effect transistors were fabricated showing a field-effect mobility (μ FE ) as high as 16 cm 2 /V s, a turn-on voltage of 2 V, a current on-to-off ratio greater than 10 5 , and a high on-current of 2.25 mA.

168 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
95% related
Carbon nanotube
109K papers, 3.6M citations
93% related
Graphene
144.5K papers, 4.9M citations
93% related
Silicon
196K papers, 3M citations
91% related
Oxide
213.4K papers, 3.6M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023343
2022730
2021537
2020684
2019804
2018838