scispace - formally typeset
Search or ask a question
Topic

Indium tin oxide

About: Indium tin oxide is a research topic. Over the lifetime, 17857 publications have been published within this topic receiving 402127 citations. The topic is also known as: indium tin oxide.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, self-assembled PEDOT:PSS monolayers are obtained on the indium tin oxide (ITO) surface through a facile water rinsing process.
Abstract: A hole transport layer (HTL) plays a key role in efficient hole extraction and transfer in inverted planar perovskite solar cells. A 10–20 nm thick poly (3,4-ethylenedioxythiphene):poly(styrenesulfonate) (PEDOT:PSS) layer is the most popular HTL in such a device structure. But is it essential to construct such a thick PEDOT:PSS layer? To address this question, herein self-assembled PEDOT:PSS monolayers are obtained on the indium tin oxide (ITO) surface through a facile water rinsing process. Perovskite solar cells with water rinsed PEDOT:PSS as a HTL yield improved power conversion efficiency (PCE) from 13.4% to 18.0%, compared with the control cells with as-cast PEDOT:PSS. The main contribution is from the open-circuit voltage (Voc) and fill factor (FF). Characterization indicates that the majority of PEDOT:PSS is washed away, but an ultra-thin layer of PEDOT:PSS can attach strongly onto ITO via In–O–S chemical bonds between the PSS chain and ITO. Subsequently, PEDOT and PSS form a bilayered structure due to Coulomb interaction. Such an arrangement induces an oriented electric field from positively charged PEDOT to negatively charged PSS, which can accelerate the process of hole extraction. Moreover, the oriented arrangement of PEDOT:PSS monolayers provides higher work function and stronger hydrophobicity, leading to the enhancement in Voc and stability in the ambient environment. This work suggests that there is still room for the efficiency improvement of perovskite solar cells by optimizing the traditional functional layers.

139 citations

Journal ArticleDOI
TL;DR: In this paper, the combined effect of an externally-applied mechanical stress to bend the device and the corrosive environment provided by the acid is investigated in a flexible optoelectronic devices.

139 citations

Journal ArticleDOI
TL;DR: In this article, the relation of the progress of crystallization in indium-oxide thin films to the change of electrical properties was studied and compared with the results on indium tin-oxide (INO) thin films.

139 citations

Journal ArticleDOI
TL;DR: Current progress in the formation and control of graphene films on polycrystalline metal surfaces is described, which has the potential to rival indium tin oxide (ITO) and become a material for producing next generation displays, solar cells, and sensors.
Abstract: Graphene, a true wonder material, is the newest member of the nanocarbon family. The continuous network of hexagonally arranged carbon atoms gives rise to exceptional electronic, mechanical, and thermal properties, which could result in the application of graphene in next generation electronic components, energy-storage materials such as capacitors and batteries, polymer nanocomposites, transparent conducting electrodes, and mechanical resonators. With one particularly attractive application, optically transparent conducting electrodes or films, graphene has the potential to rival indium tin oxide (ITO) and become a material for producing next generation displays, solar cells, and sensors.Typically, graphene has been produced from graphite using a variety of methods, but these techniques are not suitable for growing large-area graphene films. Therefore researchers have focused much effort on the development of methodology to grow graphene films across extended surfaces. This Account describes current prog...

138 citations

Journal ArticleDOI
TL;DR: Results of linear sweep voltammetric measurements reveal that ChOx/PANI-MWCNT/ITO bioelectrode can detect cholesterol in the range of 1.29 to 12.93 mM with high sensitivity and a fast response time of 10 s.

138 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
95% related
Carbon nanotube
109K papers, 3.6M citations
93% related
Graphene
144.5K papers, 4.9M citations
93% related
Silicon
196K papers, 3M citations
91% related
Oxide
213.4K papers, 3.6M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023343
2022730
2021537
2020684
2019804
2018838