scispace - formally typeset
Search or ask a question
Topic

Induced pluripotent stem cell

About: Induced pluripotent stem cell is a research topic. Over the lifetime, 27779 publications have been published within this topic receiving 1147118 citations. The topic is also known as: iPS cell & iPSc.


Papers
More filters
Journal ArticleDOI
25 Aug 2006-Cell
TL;DR: Induction of pluripotent stem cells from mouse embryonic or adult fibroblasts by introducing four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES cell culture conditions is demonstrated and iPS cells, designated iPS, exhibit the morphology and growth properties of ES cells and express ES cell marker genes.

23,959 citations

Journal ArticleDOI
30 Nov 2007-Cell
TL;DR: It is demonstrated that iPS cells can be generated from adult human fibroblasts with the same four factors: Oct3/4, Sox2, Klf4, and c-Myc.

18,175 citations

Journal ArticleDOI
21 Dec 2007-Science
TL;DR: This article showed that OCT4, SOX2, NANOG, and LIN28 factors are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells.
Abstract: Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.

9,836 citations

Journal ArticleDOI
09 Jul 1981-Nature
TL;DR: The establishment in tissue culture of pluripotent cell lines which have been isolated directly from in vitro cultures of mouse blastocysts are reported, able to differentiate either in vitro or after innoculation into a mouse as a tumour in vivo.
Abstract: Pluripotential cells are present in a mouse embryo until at least an early post-implantation stage, as shown by their ability to take part hi the formation of chimaeric animals1 and to form teratocarcinomas2. Until now it has not been possible to establish progressively growing cultures of these cells in vitro, and cell lines have only been obtained after teratocarcinoma formation in vivo. We report here the establishment in tissue culture of pluripotent cell lines which have been isolated directly from in vitro cultures of mouse blastocysts. These cells are able to differentiate either in vitro or after innoculation into a mouse as a tumour in vivo. They have a normal karyotype.

8,144 citations

Journal ArticleDOI
TL;DR: In this article, the authors described the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice and demonstrated the pluripotency of these embryonic stem cells by the observation that subclonal cultures, derived from isolated single cells, can differentiate into a wide variety of cell types.
Abstract: This report describes the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice. The pluripotency of these embryonic stem cells was demonstrated conclusively by the observation that subclonal cultures, derived from isolated single cells, can differentiate into a wide variety of cell types. Such embryonic stem cells were isolated from inner cell masses of late blastocysts cultured in medium conditioned by an established teratocarcinoma stem cell line. This suggests that such conditioned medium might contain a growth factor that stimulates the proliferation or inhibits the differentiation of normal pluripotent embryonic cells, or both. This method of obtaining embryonic stem cells makes feasible the isolation of pluripotent cells lines from various types of noninbred embryo, including those carrying mutant genes. The availability of such cell lines should made possible new approaches to the study of early mammalian development.

5,496 citations


Network Information
Related Topics (5)
Stem cell
129.1K papers, 5.9M citations
94% related
Cellular differentiation
90.9K papers, 6M citations
92% related
Signal transduction
122.6K papers, 8.2M citations
87% related
Transcription factor
82.8K papers, 5.4M citations
87% related
Regulation of gene expression
85.4K papers, 5.8M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,695
20223,905
20212,402
20202,317
20192,223
20181,990