scispace - formally typeset
Search or ask a question

Showing papers on "Inductor published in 2009"


Journal ArticleDOI
TL;DR: In this paper, the properties of a single memristor, memristors in series and parallel, as well as ideal MC, MCL and MCL circuits are discussed.
Abstract: We present an introduction to and a tutorial on the properties of the recently discovered ideal circuit element, a memristor. By definition, a memristor M relates the charge q and the magnetic flux in a circuit and complements a resistor R, a capacitor C and an inductor L as an ingredient of ideal electrical circuits. The properties of these three elements and their circuits are a part of the standard curricula. The existence of the memristor as the fourth ideal circuit element was predicted in 1971 based on symmetry arguments, but was clearly experimentally demonstrated just last year. We present the properties of a single memristor, memristors in series and parallel, as well as ideal memristor–capacitor (MC), memristor–inductor (ML) and memristor–capacitor–inductor (MCL) circuits. We find that the memristor has hysteretic current–voltage characteristics. We show that the ideal MC (ML) circuit undergoes non-exponential charge (current) decay with two time scales and that by switching the polarity of the capacitor, an ideal MCL circuit can be tuned from overdamped to underdamped. We present simple models which show that these unusual properties are closely related to the memristor's internal dynamics. This tutorial complements the pedagogy of ideal circuit elements (R, C and L) and the properties of their circuits, and is aimed at undergraduate physics and electrical engineering students.

719 citations


Journal ArticleDOI
TL;DR: This paper proposes transformerless dc-dc converters to achieve high step-up voltage gain without an extremely high duty ratio and develops a prototype circuit to verify the performance.
Abstract: Conventional dc-dc boost converters are unable to provide high step-up voltage gains due to the effect of power switches, rectifier diodes, and the equivalent series resistance of inductors and capacitors. This paper proposes transformerless dc-dc converters to achieve high step-up voltage gain without an extremely high duty ratio. In the proposed converters, two inductors with the same level of inductance are charged in parallel during the switch-on period and are discharged in series during the switch-off period. The structures of the proposed converters are very simple. Only one power stage is used. Moreover, the steady-state analyses of voltage gains and boundary operating conditions are discussed in detail. Finally, a prototype circuit is implemented in the laboratory to verify the performance.

694 citations


Patent
04 Mar 2009
TL;DR: In this article, a wireless power system includes a power source, power receiver, and components thereof, and a parasitic antenna that can improve the coupling to the power source in various modes.
Abstract: A wireless power system includes a power source, power receiver, and components thereof. The system can also include a parasitic antenna that can improve the coupling to the power source in various modes. The antenna can have both a variable capacitor and a variable inductor, and both of those can be changed in order to change characteristics of the matching.

611 citations


Journal ArticleDOI
22 Dec 2009
TL;DR: A bias-flip rectifier that can improve upon the power extraction capability of existing full-bridge rectifiers by up to 4.2× is presented and an efficient control circuit with embedded DC-DC converters that can share their filter inductor with the bias- FLIP rectifier thereby reducing the volume and component count of the overall solution is demonstrated.
Abstract: Energy harvesting is an emerging technology with applications to handheld, portable and implantable electronics. Harvesting ambient vibration energy through piezoelectric (PE) means is a popular energy harvesting technique that can potentially supply 10 to 100's of µW of available power [1]. One of the limitations of existing PE harvesters is in their interface circuitry. Commonly used full-bridge rectifiers and voltage doublers [2] severely limit the electrical power extractable from a PE harvesting element. Further, the power consumed in the control circuits of these harvesters reduces the amount of usable electrical power. In this paper, a bias-flip rectifier that can improve upon the power extraction capability of existing full-bridge rectifiers by up to 4.2× is presented. An efficient control circuit with embedded DC-DC converters that can share their filter inductor with the bias-flip rectifier thereby reducing the volume and component count of the overall solution is demonstrated.

527 citations


Book
02 Nov 2009
TL;DR: In this paper, the authors present a complete study of the fundamental concepts in magnetic theory, including the skin effect and proximity effect, for high-frequency applications including switching-mode power supplies (SMPS) and resonant circuits.
Abstract: If you are looking for a complete study of the fundamental concepts in magnetic theory, read this book. No other textbook covers magnetic components of inductors and transformers for high-frequency applications in detail. This unique text examines design techniques of the major types of inductors and transformers used for a wide variety of high-frequency applications including switching-mode power supplies (SMPS) and resonant circuits. It describes skin effect and proximity effect in detail to provide you with a sound understanding of high-frequency phenomena. As well as this, you will discover thorough coverage on: integrated inductors and the self-capacitance of inductors and transformers, with expressions for self-capacitances in magnetic components; criteria for selecting the core material, as well as core shape and size, and an evaluation of soft ferromagnetic materials used for magnetic cores; winding resistance at high frequencies; expressions for winding and core power losses when non-sinusoidal inductor or transformer current waveforms contain harmonics. Case studies, practical design examples and procedures (using the area product method and the geometry coefficient method) are expertly combined with concept-orientated explanations and student-friendly analysis. Supplied at the end of each chapter are summaries of the key concepts, review questions, and problems, the answers to which are available in a separate solutions manual. Such features make this a fantastic textbook for graduates, senior level undergraduates and professors in the area of power electronics in addition to electrical and computer engineering. This is also an inimitable reference guide for design engineers of power electronics circuits, high-frequency transformers and inductors in areas such as (SMPS) and RF power amplifiers and circuits.

443 citations


Journal ArticleDOI
TL;DR: In this article, the authors studied the effect of damping on power optimality of a piezoelectric vibration-based energy harvester, which utilizes a harvesting circuit employing an inductor and a resistive load.

314 citations


Journal ArticleDOI
TL;DR: In this paper, an improved Z-source inverter topology is proposed to suppress the inrush surge and the resonance of Zsource capacitors and inductors, and the operation principle of the proposed topology and comparison with the traditional topology are analyzed.
Abstract: This paper proposes an improved Z-source inverter topology. Compared to the traditional Z-source inverter, it can reduce the Z-source capacitor voltage stress significantly to perform the same voltage boost, and has inherent limitation to inrush current at startup. The control strategy of the proposed Z-source inverter is exactly the same as the traditional one, so all the existing control strategy can be used directly. A soft-start strategy is also proposed to suppress the inrush surge and the resonance of Z-source capacitors and inductors. The operation principle of the proposed topology and comparison with the traditional topology are analyzed in detail. Simulation and experimental results are given to demonstrate the new features of the improved topology.

314 citations


Journal ArticleDOI
TL;DR: A comparison of on-chip inductors with magnetic materials from previous studies is presented and examined in this article, where the inductors use copper metallization and amorphous Co-Zr-Ta magnetic material.
Abstract: A comparison of on-chip inductors with magnetic materials from previous studies is presented and examined. Results from on-chip inductors with magnetic material integrated into a 90 nm CMOS processes are presented. The inductors use copper metallization and amorphous Co-Zr-Ta magnetic material. Inductance densities of up to 1700 nH/mm2 were obtained thanks to inductance increases of up to 31 times, significantly greater than previously published on-chip inductors. With such improvements, the effects of eddy currents, skin effect, and proximity effect become clearly visible at higher frequencies. Co-Zr-Ta was chosen for its good combination of high permeability, good stability at high temperature (> 250degC), high saturation magnetization, low magnetostriction, high resistivity, minimal hysteretic loss, and compatibility with silicon technology. The Co-Zr-Ta alloy can operate at frequencies up to 9.8 GHz, but trade-offs exist between frequency, inductance, and quality factor. Our inductors with thick copper and thicker magnetic films have dc resistances as low as 0.04 Omega, and quality factors of up to 8 at frequencies as low as 40 MHz.

306 citations


Journal ArticleDOI
TL;DR: In this article, a bridgeless power factor correction (PFC) boost rectifier with low common-mode noise is presented. Butler et al. employed a unique multiple-winding, multicore inductor to increase the utilization of the magnetic material and verified the operation and performance of the circuit on a 750-W, universal line experimental prototype operating at 110 kHz.
Abstract: The implementation of a bridgeless power factor correction (PFC) boost rectifier with low common-mode noise is presented in this paper. The proposed implementation employs a unique multiple-winding, multicore inductor to increase the utilization of the magnetic material. The operation and performance of the circuit were verified on a 750-W, universal-line experimental prototype operating at 110 kHz.

261 citations


Journal ArticleDOI
TL;DR: In this article, a resonant boost topology suitable for very high-frequency (VHF, 30-300 MHz) DC-DC power conversion is presented, which features low device voltage stress, high efficiency over a wide load range, and excellent transient performance.
Abstract: This paper presents a resonant boost topology suitable for very-high-frequency (VHF, 30-300 MHz) DC-DC power conversion. The proposed design features low device voltage stress, high efficiency over a wide load range, and excellent transient performance. Two experimental prototypes have been built and evaluated. One is a 110-MHz, 23-W converter that uses a high-performance RF lateral DMOSFET. The converter achieves higher than 87% efficiency at nominal input and output voltages, and maintains good efficiency down to 5% of full load. The second implementation, aimed toward integration, is a 50-MHz, 17-W converter that uses a transistor from a 50-V integrated power process. In addition, two resonant gate drive schemes suitable for VHF operation are presented, both of which provide rapid startup and low-loss operation. Both converters regulate the output using high-bandwidth, on-off hysteretic control, which enables fast transient response and efficient light-load operation. The low energy storage requirements of the converters allow the use of aircore inductors in both designs, thereby eliminating magnetic core loss and introducing the possibility of easy integration.

254 citations


Journal ArticleDOI
Oscar Lucia1, Jose M. Burdio1, I. Millan1, Jesus Acero1, D. Puyal1 
TL;DR: In this paper, a frequency limit and power level limit algorithm based on square wave and pulse density modulations is proposed for domestic induction cookers, where the main design criteria are efficiency, power balance, acoustic noise, flicker emissions and user performance.
Abstract: Domestic induction cookers operation is based on a resonant inverter which supplies medium-frequency currents (20-100 kHz) to an inductor, which heats up the pan. The variable load that is inherent to this application requires the use of a reliable and load-adaptive control algorithm. In addition, a wide output power range is required to get a satisfactory user performance. In this paper, a control algorithm to cover the variety of loads and the output power range is proposed. The main design criteria are efficiency, power balance, acoustic noise, flicker emissions, and user performance. As a result of the analysis, frequency limit and power level limit algorithms are proposed based on square wave and pulse density modulations. These have been implemented in a field-programmable gate array, including output power feedback and mains-voltage zero-cross-detection circuitry. An experimental verification has been performed using a commercial induction heating inverter. This provides a convenient experimental test bench to analyze the viability of the proposed algorithm.

Journal ArticleDOI
TL;DR: A high-efficiency fuel cell power conditioning system with input current ripple reduction using a current-ripple reduction control and a voltage-doubler rectifier is proposed to remove the reverse-recovery problem of the output rectifying diodes and provide much higher voltage conversion ratio.
Abstract: A high-efficiency fuel cell power conditioning system with input current ripple reduction is proposed. The proposed system consists of a high-efficiency high-step-up current-fed resonant push-pull converter and a full-bridge inverter. The converter conserves inherent advantages of a conventional current-fed push-pull converter such as low input-current stress and high voltage conversion ratio. Also, a voltage-doubler rectifier is employed in order to remove the reverse-recovery problem of the output rectifying diodes and provide much higher voltage conversion ratio. The current ripple reduction control without an external component is suggested. Therefore, the proposed system operates in a wide input-voltage range with a high efficiency. By using a current-ripple reduction control, the input current ripple is furthermore reduced. A 1.5-kW prototype is implemented with input-voltage range from 30 to 70 V. Experimental results show that minimum efficiency at full load is about 92.5% and that ripple current is less than 2% of the rated input current.

Journal ArticleDOI
TL;DR: This paper provides a comprehensive guideline for the design of a single-phase PFC targeting for minimal volume, as it is highly relevant for ultracompact integrated systems.
Abstract: This paper provides a comprehensive guideline for the design of a single-phase PFC targeting for minimal volume, as it is highly relevant for ultracompact integrated systems. It is shown, how different operation modes (continuous, boundary, and discontinuous conduction mode) may influence the design and consequently the achieved power density. Furthermore, the effect of interleaving of several boost stages is analyzed as a measure for compactness increase. Finally, the selection of the appropriate switching frequency in order to achieve an overall optimized system is discussed. In this way, the design of the crucial components is carried out, namely, the boost inductor, including a volume optimization through a thermal connection to the heat sink; the output capacitor considering the rms current stress; and the input filter, which is designed for compliance with high-frequency electromagnetic compatibility standards, taking into account the quasi-peak detection measurement of the test receiver equipment.

Journal ArticleDOI
TL;DR: A new delta-voltage generator can automatically switch the operating mode from pulse width modulation (PWM) mode to hysteresis mode, thereby avoiding inductor current accumulation when the total power of the buck output terminals is larger than that of the boost output terminals.
Abstract: A load-dependant peak-current control single-inductor multiple-output (SIMO) DC-DC converter with hysteresis mode is proposed. It includes multiple buck and boost output voltages. Owing to the adaptive adjustment of the load-dependant peak-current control technique and the hysteresis mode, the cross-regulation can be minimized. Furthermore, a new delta-voltage generator can automatically switch the operating mode from pulse width modulation (PWM) mode to hysteresis mode, thereby avoiding inductor current accumulation when the total power of the buck output terminals is larger than that of the boost output terminals. The proposed SIMO DC-DC converter was fabricated in TSMC 0.25 mum 2P5M technology. The experimental results show high conversion efficiency at light loads and small cross-regulation within 0.35%. The power conversion efficiency varies from 80% at light loads to 93% at heavy loads.

Journal ArticleDOI
S. Waffler1, Johann W. Kolar1
TL;DR: In this article, a low-loss, constant-frequency, zero-voltage switching (ZVS) modulation strategy for bidirectional, cascaded, buck-boost DC-DC converters, used in hybrid electrical vehicles or fuel cell vehicles (FCVs), is presented and its benefits over state-of-the-art converters and soft-switching solutions are discussed in a comparative evaluation.
Abstract: A novel, low-loss, constant-frequency, zero-voltage-switching (ZVS) modulation strategy for bidirectional, cascaded, buck-boost DC-DC converters, used in hybrid electrical vehicles or fuel cell vehicles (FCVs), is presented and its benefits over state-of-the-art converters and soft-switching solutions are discussed in a comparative evaluation. To obtain ZVS with the proposed modulation strategy, the buck+boost inductance is selected and the switches are gated in a way that the inductor current has a negative offset current at the beginning and the end of each pulse period. This allows the MOSFET switches to turn on when the antiparallel body diode is conducting. As the novel modulation strategy is a software-only solution, there are no additional expenses for the active or passive components compared to conventional modulation implementations. Furthermore, an analytical and simulation investigation predicts an excellent efficiency over the complete operating range and a higher power density for a nonisolated multiphase converter equipped with the low-loss modulation. Experimental measurements performed with 12 kW, 17.4 kW/L prototypes in stand-alone and multiphase configuration verify the low-loss operation over a wide output power range and a maximum efficiency of 98.3% is achieved.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a soft-switching interleaved boost converter composed of two shunted elementary boost conversion units and an auxiliary inductor, which is able to turn on both the active power switches at zero voltage to reduce their switching losses and evidently raise the conversion efficiency.
Abstract: This paper proposes a novel soft-switching interleaved boost converter composed of two shunted elementary boost conversion units and an auxiliary inductor. This converter is able to turn on both the active power switches at zero voltage to reduce their switching losses and evidently raise the conversion efficiency. Since the two parallel-operated elementary boost units are identical, operation analysis and design for the converter module becomes quite simple. A laboratory test circuit is built, and the circuit operation shows satisfactory agreement with the theoretical analysis. The experimental results show that this converter module performs very well with the output efficiency as high as 95%.

Journal ArticleDOI
TL;DR: In this article, a discussion of the various topologies of step-up DC/DC converters used for FCs' power-conditioning system is presented, and the examinations of several different approaches to powerconditioning systems for single and multiple FC combinations have been reviewed.
Abstract: Fuel cells (FCs) hold great promise as a clean energy conversion technology. A large research effort is underway to develop the FC for applications ranging from small portable electronic devices to automotive transport, as well as residential combined heat and power supplies. These applications have a large emerging market and widespread adoption should lead to a reduced dependence on fossil fuels as well as encourage the development of a hydrogen economy. FCs produce low DC voltage, so that it is most often connected to electric networks through a step-up DC/DC converter. This article first introduces electrical characteristics, power electronic requirements, and different types of FCs and is then followed by a discussion of the various topologies of step-up DC/DC converters used for FCs' power-conditioning system. The examinations of several different approaches to power-conditioning systems for single and multiple FC combinations have been reviewed. High-power DC distributed power systems supplied by FC invokes the need to parallel power modules with interleaving technique. By method of the parallel converter modules with interleaving algorithm for an FC generatorfor high-power applications, inductor size (ferrite core and Litzwire) are simple to design and fabricate, and the FC ripple current can be virtually reduced to zero. As a result, the FC mean current is nearly equal to the FC rms current. The main drawback of the multiphase approach is added circuit complexity, requiring measurement and balancing of each phase current as the larger number of control components illustrates.

Journal ArticleDOI
TL;DR: A closed form equation relating the RF power available from the antenna to the DC output voltage produced by a multi-stage rectifier enables the optimization of rectifier parameters for impedance matching with a low-cost printed antenna and shunt tuning inductor, in order to improve the RF to DC conversion efficiency and the operational distance of UHF RFID transponders.
Abstract: This paper presents a RF to DC conversion model for multi-stage rectifiers in UHF RFID transponders. An equation relating the RF power available from the antenna to the DC output voltage produced by a multi-stage rectifier is presented. The proposed model includes effects of the nonlinear forward voltage drop in diodes and impedance matching conditions of the antenna to rectifier interface. Fundamental frequency impedance approximation is used to analyze the resistance of rectifying diodes; parasitic resistive loss components are also included in the analysis of rectifier input resistance. The closed form equation shows insights into design parameter tradeoffs, such as power available from the antenna, antenna radiation resistance, the number of diodes, DC load current, parasitic resistive loss components, diode and capacitor sizes, and frequency of operation. Therefore, it enables the optimization of rectifier parameters for impedance matching with a low-cost printed antenna and shunt tuning inductor, in order to improve the RF to DC conversion efficiency and the operational distance of UHF RFID transponders. Three diode doublers and three multistage rectifiers were fabricated in a 130 nm CMOS process with custom no-mask added Schottky diodes. Measurements of the test IC are in good agreement with the proposed model.

Journal ArticleDOI
TL;DR: In this article, the authors reviewed recent progress in the field of microwave magnetic properties of composites and concluded that the validity of a mixing rule is determined by the permeability contrast in the composite, i.e., the difference between permeability of inclusions and the host matrix.

Patent
Takeshi Ueno1, Kohei Onizuka1
18 Nov 2009
TL;DR: In this article, a power reception device includes a load circuit, to which a first signal having a first power value is supplied from a first resonance circuit connected to the power reception coil, and a first transceiver which transmits the first value to a power transmission device.
Abstract: In one embodiment, a power reception device includes a load circuit, to which a first signal having a first power value is supplied from a first resonance circuit connected to a power reception coil, and a first transceiver which transmits the first power value to a power transmission device. The power transmission device includes a second resonance circuit including a plurality of inductors and capacitors to which a second signal having a second power value is input, a power transmission coil connected to the second resonance circuit, a second transceiver which receives the first power value from the first transceiver, and a first control circuit which calculates power transmission efficiency using the first power value and the second power value and adjusts at least one of inductance values of the inductors and/or at least one of capacitance values of the capacitors based on the power transmission efficiency.

Journal ArticleDOI
TL;DR: In this paper, a controller design methodology for a quadratic boost converter with a single active switch is developed, where the first inductor current and the output capacitor voltage are selected for feedback purposes.
Abstract: A controller design methodology for a quadratic boost converter with a single active switch is developed. This converter has two LC filters; thus, it will exhibit fourth-order characteristic dynamics. However, only the first inductor current and the output capacitor voltage are selected for feedback purposes. This current can also be used for one-cycle overload protection; therefore, the full benefits of current-mode control are maintained. Average current-mode control is selected over peak current-mode control because this strategy provides a faster transient response and better noise immunity. The high-gain compensator of the current loop helps tracking the current programme with a high degree of accuracy. The robustness of the proposed controller is tested under changes in the input voltage, output load and reference signal.

Journal ArticleDOI
TL;DR: In this article, a frequency-dependent impedance extraction method is developed for both single-walled CNT (SWCNT) and multiwalled carbon nanotube (MWCNT), and the method is subsequently verified by comparing the results with those derived directly from the Maxwell's equations.
Abstract: This paper presents a rigorous investigation of high-frequency effects in carbon nanotube (CNT) interconnects and their implications for the design and performance analysis of high-quality on-chip inductors. A frequency-dependent impedance extraction method is developed for both single-walled CNT (SWCNT) and multiwalled CNT (MWCNT) bundle interconnects. The method is subsequently verified by comparing the results with those derived directly from the Maxwell's equations. Our analysis reveals for the first time that skin effect in CNT (particularly MWCNT) bundles is significantly reduced compared to that in conventional metal conductors, which makes them very attractive and promising material for high-frequency applications, including high-quality (Q) factor on-chip inductor design in high-performance RF/mixed-signal circuits. It is shown that such unique high-frequency properties of CNTs essentially arise due to their large momentum relaxation time (leading to their large kinetic inductance), which causes the skin depths to saturate with frequency and thereby limits resistance increase at high frequencies in a bundle structure. It is subsequently shown that CNT-based planar spiral inductors can achieve more than three times higher Q factor than their Cu-based counterparts without using any magnetic materials or Q factor enhancement techniques.

Journal ArticleDOI
TL;DR: In this paper, the design, construction, and performance of a 3-kVA All-SiC current-source converter (CSC), also known as current dc-link back-to-back converter (CLBBC), is presented.
Abstract: Silicon carbide (SiC) switching devices have been widely discussed in power electronics due to their desirable properties and are believed to set new standards in efficiency, switching behavior, and power density for state-of-the-art converter systems. In this paper, the design, construction, and performance of a 3-kVA All-SiC current-source converter (CSC), also known as current dc-link back-to-back converter (CLBBC), is presented. CSC topologies have been successfully used for many years for high-power applications. However, for low-power-range converter systems, they could not compete with voltage-source-converter topologies with capacitors in the dc-link, since the link inductor has always been a physically large and heavy component due to the comparatively low switching frequencies of conventional high-blocking-voltage silicon devices. New SiC switches such as the JFET, which are providing simultaneously high-voltage blocking, low switching losses, and low on-state resistance (three times lower compared with Si MOSFET with similar V- I rating), offer new possibilities and enable the implementation of a high switching frequency CLBBC and, thus, reducing size and weight of the dc-link inductor. The prototype CLBBC has been designed specifically for the latest generation 1200-V 6-A SiC JFETs and a target switching frequency of 200 kHz.

Journal ArticleDOI
TL;DR: The proposed converter has no startup problem and no high voltage spikes on the switches, which otherwise are inherent for current- and voltage-fed-type bidirectional converters, and is easy to achieve soft switching by proper control and design.
Abstract: This paper presents a novel topology named forward-flyback bidirectional DC-DC converter (BDC), which is a hybrid of forward and flyback converters The windings of forward and flyback transformers are connected in series on the primary side and in parallel on the secondary side The proposed converter has no startup problem and no high voltage spikes on the switches, which otherwise are inherent for current- and voltage-fed-type bidirectional converters It is easy to achieve soft switching by proper control and design The built-in flyback transformer acts as a filter inductor, so the current ripple is smaller than flyback BDCs In this paper, the operation principles and characteristics of the proposed topology are analyzed in detail The advantages aforementioned are verified with experimental results of a 300-W prototype

Journal ArticleDOI
TL;DR: In this paper, a single-stage, single-phase grid-connected inverter operating in continuous conduction mode (CCM) is proposed to minimize the overall cost and control complexity.
Abstract: The cost and efficiency of a photovoltaic (PV)-based grid-connected system depends upon the number of components and stages involved in the power conversion. This has led to the development of several single-stage configurations that can perform voltage transformation, maximum power point tracking (MPPT), inversion, and current shaping-all in one stage. Such configurations would usually require at least a couple of current and voltage sensors and a relatively complex control strategy. With a view to minimize the overall cost and control complexity, this paper presents a novel MPPT scheme with reduced number of sensors. The proposed scheme is applicable to any single-stage, single-phase grid-connected inverter operating in continuous conduction mode (CCM). The operation in CCM is desirable as it drastically reduces the stress on the components. Unlike other MPPT methods, which sense both PV array's output current and voltage, only PV array's output voltage is required to be sensed to implement MPPT. Only one current sensor is used for shaping the buck-boost inductor current as well as for MPPT. The information about power output of the array is obtained indirectly from array's voltage and the inductor current amplitude. Detailed analysis and the flowchart of the algorithm for the proposed scheme are included. Simulation and experimental results are also presented to highlight the usefulness of the scheme.

Journal ArticleDOI
TL;DR: In this paper, the theoretical and experimental results achieved in optimizing the application of the series loaded series resonant converter for contactless energy transfer are described. But the main goal of this work is to define the power stage operation mode that guarantees the highest possible efficiency.
Abstract: This paper describes the theoretical and experimental results achieved in optimizing the application of the series loaded series resonant converter for contactless energy transfer. The main goal of this work is to define the power stage operation mode that guarantees the highest possible efficiency. The results suggest a method to select the physical parameters (operation frequency, characteristic impedance, transformer ratio, etc.) to achieve that efficiency improvement. The research clarifies also the effects of the physical separation between both halves of the ferromagnetic core on the characteristics of the transformer. It is shown that for practical values of the separation distance, the leakage inductance, being part of the resonant inductor, remains almost unchanged. Nevertheless, the current distribution between the primary and the secondary windings changes significantly due to the large variation of the magnetizing inductance. An approximation in the circuit analysis permits to obtain more rapidly the changing values of the converter parameters. The analysis results in a set of equations which solutions are presented graphically. The graphics show a shift of the best efficiency operation zone, compared to the converter with an ideally coupled transformer. Experimental results are presented confirming that expected tendency.

Patent
28 Jul 2009
TL;DR: In this paper, a switching power supply device for a ripple control system that can obtain the ripple component with the necessary amplitude without using discrete elements was proposed, where the ripple voltage generated on capacitor Ci has a waveform similar to that of the ripple current flowing through inductor Lo.
Abstract: A switching power supply device for a ripple control system that can obtain the ripple component with the necessary amplitude without using discrete elements. On capacitor Ci of CR integrator 11 , a voltage is generated corresponding to the integration value of the voltage applied to inductor Lo. The ripple voltage generated on capacitor Ci has a waveform similar to that of the ripple current flowing through inductor Lo. The voltage of capacitor Ci is converted into current Iq by voltage/current converter 12 , and the current is injected in resistor R 3 arranged on the transmission path of output feedback voltage VFB in comparator 2 . Resistor R 3 generates ripple voltage (Iqxr 3 ) corresponding to the ripple current flowing through inductor Lo. The synthetic voltage of the ripple voltage and output feedback voltage VFB is compared to reference voltage Vref.

Patent
26 Feb 2009
TL;DR: In this article, the authors provide systems, methods, and apparatus for wireless power transfer, including an inductor having an inductance value and a capacitor electrically connected to the inductor.
Abstract: The disclosure provides systems, methods, and apparatus for wireless power transfer. In one aspect, an apparatus configured to receive wireless power from a transmitter is provided. The apparatus includes an inductor having an inductance value. The apparatus further includes a capacitor electrically connected to the inductor and having a capacitance value. The apparatus further includes an optimizing circuit configured to optimize transfer efficiency of power received wirelessly from the transmitter, provided that an amount of the power received wirelessly and provided to a load is greater than or equal to a received power threshold, or optimize the amount of the power received wirelessly from the transmitter, provided that the power transfer efficiency is greater than or equal to an efficiency threshold.

Journal ArticleDOI
Kang-Hyun Yi1, Gun-Woo Moon1
TL;DR: This paper deals with a novel two-phase interleaved LLC resonant converter using a phase of the resonant capacitor that satisfies low output-voltage ripple requirement and meets the rated ripple of output capacitor's current with few output capacitors.
Abstract: An LLC series-resonant converter has many unique characteristics and improvements over pulsewidth-modulation topologies. However, many output capacitors are needed in parallel to satisfy an output voltage ripple and a rated ripple current of the capacitors. This paper deals with a novel two-phase interleaved LLC resonant converter using a phase of the resonant capacitor. The proposed converter satisfies low output-voltage ripple requirement and meets the rated ripple of output capacitor's current with few output capacitors. The operation and features are considered in detail, and a prototype with a 12-V-100-A output is investigated.

Proceedings ArticleDOI
06 Nov 2009
TL;DR: The quasi-resonant technique for multilevel modular switched-capacitor circuit (MMSCC) to achieve zero-current-switching (ZCS) without increasing cost and sacrificing reliability is presented, leading to reliable and high efficiency advantages over traditional MMSCC.
Abstract: This paper presents a quasi-resonant technique for multilevel modular switched-capacitor circuit (MMSCC) to achieve zero-current-switching (ZCS) without increasing cost and sacrificing reliability. This zero-current-switching multilevel modular switched-capacitor circuit (ZCS-MMSCC) employs the stray inductance existing in the circuit as the resonant inductor to resonate with the capacitor and provide low dv/dt and low switching loss for the device. The ZCS-MMSCC does not utilize any additional components to achieve ZCS and solves the current and voltage spike problem during the switching transition, thus leading to reliable and high efficiency advantages over traditional MMSCC. Furthermore, the ZCS-MMSCC reduces the capacitance needed the circuit; in this case, the bulky capacitors present in traditional MMSCC to attain high efficiency is not necessary any more. A 150 W four-level ZCS-MMSCC prototype has been built. Simulation and experimental results are given to demonstrate the validity and features of the soft switching switched-capacitor circuit.