scispace - formally typeset
Search or ask a question
Topic

Inductor

About: Inductor is a research topic. Over the lifetime, 52565 publications have been published within this topic receiving 484068 citations. The topic is also known as: passive two terminal.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a hybrid phase-shift full-bridge and half-bridge converter with shared zero-voltage switching (ZVS) lagging leg is proposed to ensure the switches in the Lagging leg operating at fully ZVS condition, and the dual outputs of the proposed hybrid FB-HB converter are connected in series and the whole dc-output voltage can be regulated by the PWM phase shift control within the desired voltage range.
Abstract: A novel soft-switching hybrid converter combining the phase-shift full-bridge (FB) and half-bridge (HB) LLC resonant converters' configuration with shared zero-voltage switching (ZVS) lagging leg is proposed to ensure the switches in the lagging leg operating at fully ZVS condition. The dual outputs of the proposed hybrid FB-HB converter are connected in series and the whole dc-output voltage can be regulated by the PWM phase-shift control within the desired voltage range. A resonant circuit is used in the secondary side of the FB converter to reset the primary current during the freewheeling period, as well as to transfer more input energy and clamp secondary rectifier voltage. The proposed converter is attractive for hybrid electric vehicle/electric vehicle on-board charger applications. The principle of operation, the validity, and performance are illustrated and verified on a 3.7-kW experimental circuit. Experimental results show that the proposed converter can get good efficiency curves at different operation points, and the maximum efficiency is 98.30%.

120 citations

Journal ArticleDOI
TL;DR: In this article, a resonant gate drive circuit for synchronous buck converter was proposed, which charges and discharges the gate of MOSFET at a constant current during switching interval.
Abstract: This paper proposes a new resonant gate drive circuit for driving both the control metal oxide semiconductor field effect transistor (MOSFET) and synchronous MOSFET in a synchronous buck converter. The circuit can recover more than 70% of the conventional gate drive loss. More importantly, the driving circuit can also reduce the switching loss. It charges and discharges the gate of MOSFET at a constant current during switching interval. Other advantages of the proposed circuit include better noise immunity for dv/dt turn on, less sensitive to parasitic track inductance. The experimental prototype shows that the loss reduction is 10% of the output power for 12 V input, 1.5 V/15 A output with switching frequency of 1 MHz.

120 citations

Journal ArticleDOI
TL;DR: In this paper, a three-phase bidirectional inverter is used for dc-bus voltage control with power factor correction, which can fulfill both grid connection and rectification modes.
Abstract: This paper presents dc-bus voltage control with a three-phase bidirectional inverter for dc distribution systems. The bidirectional inverter can fulfill both grid connection and rectification modes with power factor correction. The proposed control includes two approaches, one line-cycle regulation approach (OLCRA) and one-sixth line-cycle regulation approach (OSLCRA), which take into account dc-bus capacitance and control dc-bus voltage to track a linear relationship between the dc-bus voltage and inverter inductor current. Since both of the approaches require the parameter of dc-bus capacitance, this paper first presents determination of dc-bus capacitor size and an online capacitance estimation method. With the OLCRA, the inverter tunes the dc-bus voltage every line cycle, which can reduce the frequency of operation-mode change and current distortion. The OSLCRA adjusts current command every one-sixth line cycle to adapt to abrupt dc-bus voltage variation. The two approaches together can prevent dc-bus voltage from wide variation and improve the availability of the dc distribution systems without increasing dc-bus capacitance. Experimental results measured from a three-phase bidirectional inverter have verified the feasibility of the discussed control approaches.

120 citations

Proceedings ArticleDOI
23 Jun 1996
TL;DR: In this paper, the parasitic effects in stranded, twisted, and Litz wire windings operating at high frequencies are studied and an expression for the AC resistance as a function of the operating frequency is given.
Abstract: The parasitic effects in stranded, twisted, and Litz wire windings operating at high frequencies are studied. The skin and proximity effects that cause the winding parasitic resistance of an inductor to increase with the operating frequency are considered. An expression for the AC resistance as a function of the operating frequency is given. The measured and calculated values of the inductor AC resistance and quality factor are plotted versus frequency and compared. The theoretical results were in good agreement with those experimentally measured.

120 citations

Journal ArticleDOI
01 Sep 1983
TL;DR: In this article, a superconducting magnetic energy storage (SMES) system was built to damp power oscillations on the Western U.S. Power System, particularly on the Pacific AC Intertie that is used to transmit power from the Northwest to southern California.
Abstract: A superconducting magnetic energy storage (SMES) system has been built to damp power oscillations on the Western U.S. Power System, particularly on the Pacific AC Intertie that is used to transmit power from the Northwest to southern California. The 30-MJ superconducting inductor that stores energy for this purpose is contained in a nonconducting dewar and is supported by a helium refrigerator and a gas-handling system mounted on trailers. Energy flows in and out of the inductor at frequencies from 0.1 to 1.0 Hz with power amplitudes up to 11 MW. The principal oscillation to be damped has a characteristic frequency of 0.35 Hz. The superconducting coil maximum current is 5 kA with terminal voltages up to 2.2 kV. The coil interfaces with the Bonneville Power Administration 13.8-kV bus at the Tacoma Substation through a converter and transformers. The system can be operated with the converter either in parallel-bridge mode or for constant VAR control with the bridges in buck-boost mode. The program for the design, fabrication, installation, and the preliminary experimental operation of the system is reviewed.

120 citations


Network Information
Related Topics (5)
Capacitor
166.6K papers, 1.4M citations
94% related
Voltage
296.3K papers, 1.7M citations
93% related
CMOS
81.3K papers, 1.1M citations
84% related
Amplifier
163.9K papers, 1.3M citations
84% related
Electric power system
133K papers, 1.7M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023985
20222,105
20211,507
20202,637
20193,217
20183,173