scispace - formally typeset
Search or ask a question
Topic

Inductor

About: Inductor is a research topic. Over the lifetime, 52565 publications have been published within this topic receiving 484068 citations. The topic is also known as: passive two terminal.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the potential for integration of efficient power converters requires technology for efficient, high-power on-chip inductors and transformers, and the authors examined the technologies, geometries, and scaling of air-core and magnetic-core transformers.
Abstract: Integration of efficient power converters requires technology for efficient, high-power on-chip inductors and transformers. Increases in switching frequency, facilitated by advances in circuit designs and silicon or wide-bandgap semiconductors, can enable miniaturization, but only if the magnetics technology works well at the higher frequencies. Technologies, geometries, and scaling of air-core and magnetic-core inductors and transformers are examined, and their potential for integration is discussed. Air-core inductors can use simpler fabrication, and increasing frequency can always be used to decrease their size, but magnetic cores can decrease the required thickness without requiring as high a frequency.

116 citations

Journal ArticleDOI
21 Nov 2005
TL;DR: In this article, a zero-current switching switched-capacitor quasi-resonant DC-DC converter is proposed to improve the current stress problem during bidirectional power flow control processing.
Abstract: The proposed zero-current-switching switched-capacitor quasi-resonant DC-DC converter is a new type of bidirectional power flow control conversion scheme. It possesses the conventional features of resonant switched-capacitor converters: low weight, small volume, high efficiency, low EMI emission and current stress. A zero-current-switching switched-capacitor step-up/step-down bidirectional converter is presented that can improve the current stress problem during bidirectional power flow control processing. It can provide a high voltage conversion ratio using four power MOSFET main switches, a set of switched capacitors and a small resonant inductor. The converter operating principle of the proposed bidirectional power conversion scheme is described in detail with circuit model analysis. Simulation and experiment are carried out to verify the concept and performance of the proposed bidirectional DC-DC converter.

116 citations

Journal ArticleDOI
TL;DR: In this article, a DC-AC inverter with no inductors or transformers is presented, where the role of the magnetic devices is played by a switched-capacitor (SC) circuit, formed by two subcircuits.
Abstract: A DC-AC inverter containing no inductors or transformers is presented. The role of the magnetic devices is played by a switched-capacitor (SC) circuit, formed by two subcircuits. Each SC-subcircuit contains 15 basic cells, each one formed by one capacitor, two MOSFETs and two diodes. The sinusoidal output waveform is realized in a staircase, formed by 64 steps. To achieve each step, the inverter operates like a step-up DC-DC converter: by using a certain number of SC-cells, the input voltage is boosted to the voltage required by the step in consideration. Each step is implemented in a large number of switching cycles. In each cycle, the inverter goes through four phases; according to a designed switching sequence, some of the capacitors of the SC-cells involved in the respective step are in a charging process from line, while the others are in a discharging process to the load. The phases 2 and 4 have a regulation role only. A duty cycle control is used. A Fourier analysis evidences the clean AC output waveform. The inverter exhibits low weight, high power density, and enhanced regulation for large changes in line and load.

116 citations

Journal ArticleDOI
TL;DR: Since the voltage clamping, synchronous rectification and soft-switching techniques are utilised in the proposed circuit topology and the corresponding device specifications are adequately fulfilled, the proposed converter can provide highly efficient bidirectional power conversion in a wide range on the low-voltage side.
Abstract: This study presents a novel soft-switching bidirectional dc-dc converter with a coupled inductor. Transformer-based circuit topologies are commonly employed in conventional bidirectional converters and soft-switching techniques, including zero-voltage switching (ZVS) or zero-current switching (ZCS), are frequently applied to mitigate switching losses. Unfortunately, the use of more than four switches and several diodes in these transformer-based schemes increase production costs and reduce conversion efficiency. This work presents a coupled-inductor bidirectional converter scheme that utilises four power switches to achieve the goal of bidirectional current control. The high step-up and step-down ratios enable a battery module current with a low-voltage level to be injected into a high-voltage dc bus for subsequent utilisation. Experimental results based on a 24 V/200 V 800 W prototype are provided to verify the effectiveness of the proposed bidirectional converter. Since the voltage clamping, synchronous rectification and soft-switching techniques are utilised in the proposed circuit topology and the corresponding device specifications are adequately fulfilled, the proposed converter can provide highly efficient bidirectional power conversion in a wide range on the low-voltage side.

115 citations

Journal ArticleDOI
TL;DR: This paper presents a comprehensive physical characterization and modeling of the three-phase common-mode (CM) inductors along with the equivalent circuits that are relevant for their design.
Abstract: This paper presents a comprehensive physical characterization and modeling of the three-phase common-mode (CM) inductors along with the equivalent circuits that are relevant for their design. Modeling issues that are treated sparsely in previous literature are explained in this paper, and novel insightful aspects are presented. The calculation of the leakage inductance is reviewed, along with the magnetic core saturation issues, and a new expression for the leakage flux path is derived. The influence of the core material characteristics on the performance of the component is discussed, and a new method for the selection of the material for the minimized volume CM inductors is proposed in order to simplify the design procedure. Experimental results which validate the model are presented.

115 citations


Network Information
Related Topics (5)
Capacitor
166.6K papers, 1.4M citations
94% related
Voltage
296.3K papers, 1.7M citations
93% related
CMOS
81.3K papers, 1.1M citations
84% related
Amplifier
163.9K papers, 1.3M citations
84% related
Electric power system
133K papers, 1.7M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023985
20222,105
20211,507
20202,637
20193,217
20183,173