scispace - formally typeset
Search or ask a question
Topic

Inductor

About: Inductor is a research topic. Over the lifetime, 52565 publications have been published within this topic receiving 484068 citations. The topic is also known as: passive two terminal.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed converter topology has a favorable voltage-clamped effect and superior conversion efficiency and the closed-loop control methodology is utilized in the proposed scheme to overcome the voltage-drift problem of power source under the variation of loads.
Abstract: This paper investigates a high-efficiency clamped-voltage dc-dc converter with reduced reverse-recovery current and switch-voltage stress. In the circuit topology, it is designed by way of the combination of inductor and transformer to increase the corresponding voltage gain. Moreover, one additional inductor provides the reverse-current path of the transformer to enhance the utility rate of magnetic core. In addition, the voltage-clamped technology is used to reduce the switch-voltage stress so that it can select the Schottky diode in the output terminal for alleviating the reverse-recovery current and decreasing the switching and conduction losses. Furthermore, the closed-loop control methodology is utilized in the proposed scheme to overcome the voltage-drift problem of power source under the variation of loads. Thus, the proposed converter topology has a favorable voltage-clamped effect and superior conversion efficiency. Some experimental results via an example of a proton-exchange-membrane fuel cell (PEMFC) power source with a 250-W nominal rating are given to demonstrate the effectiveness of the proposed power-conversion strategy.

104 citations

Proceedings ArticleDOI
08 Jan 1996
TL;DR: The power conversion system (PCS) developed by the author is a new technology that efficiently transforms power between AC and DC as mentioned in this paper, which is accomplished using solid state switching devices, capacitors, air-core inductors and an intelligent control system.
Abstract: The power conversion system (PCS) developed by the author is a new technology that efficiently transforms power between AC and DC. The conversion process permits the input voltage level to be stepped up or down without the use of magnetic core transformers. The transformation is accomplished using solid state switching devices, capacitors, air-core inductors and an intelligent control system. The technology is based on the property of resonance charging, thereby permitting the use of self commutating switches. The current through the switches, being sinusoidal in nature, has a low dI/dt. This permits the use of slower, less expensive thyristors, similar to those used in high voltage phase control applications. Using these components, a highly efficient inverter can be constructed for a variety of large utility applications.

104 citations

Journal ArticleDOI
TL;DR: An enhanced DC–DC converter is proposed in this paper, based on the combination of the Cuk and SEPIC converters, which is well-suited for solar photovoltaic (PV) applications.
Abstract: An enhanced DC–DC converter is proposed in this paper, based on the combination of the Cuk and SEPIC converters, which is well-suited for solar photovoltaic (PV) applications. The converter uses only one switch (which is ground-referenced, so simple gate drive circuitry may be used), yet provides dual outputs in the form of a bipolar DC bus. The bipolar output from the DC–DC converter is able to send power to the grid via any inverter with a unipolar or bipolar DC input, and leakage currents can be eliminated if the latter type is used without using lossy DC capacitors in the load current loop. The proposed converter uses integrated magnetics cores to couple the input and output inductors, which significantly reduces the input current ripple and hence greatly improves the power extracted from the solar PV system. The design methodology along with simulation, experimental waveforms, and efficiency measurements of a 4-kW DC–DC converter are presented to prove the concept of the proposed converter. Furthermore, a 1-kW inverter is also developed to demonstrate the converter's grid-connection potential.

103 citations

Patent
08 Jan 1998
TL;DR: In this paper, a high Q MEMS capacitor that can be continuously tuned with a large tuning ratio or reversibly trimmed using an electrostatic force was presented. But the tuning error was not addressed.
Abstract: A high Q MEMS capacitor that can be continuously tuned with a large tuning ratio or reversibly trimmed using an electrostatic force. The tunable capacitor has a master/slave structure in which a control voltage is applied to the master (control) capacitor to set the capacitance of the slave (signal) capacitor to which an RF signal is applied via a suspended mechanical coupler. The master-slave structure reduces tuning error by reducing the signal capacitor's surface area and increasing its spring constant, and may eliminate the need for discrete blocking inductors by electrically isolating the control and signal capacitors. The trimmable capacitor provides an electrostatic actuator that selectively engages a stopper with teeth on a tunable capacitor structure to fix the trimmed capacitance.

103 citations

Patent
28 Apr 1997
TL;DR: In this paper, an integrated, tunable inductance network features a number of fixed inductors fabricated on a common substrate along with a switching network made up of a many micro-electromechanical (MEM) switches.
Abstract: An integrated, tunable inductance network features a number of fixed inductors fabricated on a common substrate along with a switching network made up of a number of micro-electromechanical (MEM) switches. The switches selectably interconnect the inductors to form an inductance network having a particular inductance value, which can be set with a high degree of precision when the inductors are configured appropriately. The preferred MEM switches introduce a very small amount of resistance, and the inductance network can thus have a high Q. The MEM switches and inductors can be integrated using common processing steps, reducing parasitic capacitance problems associated with wire bonds and prior art switches, increasing reliability, and reducing the space, weight and power requirements of prior art designs. The precisely tunable high-Q inductance network has wide applicability, such as in a resonant circuit which provides a narrow bandwidth frequency response which peaks at a specific predetermined frequency, making possible a highly selective performance low noise amplifier (LNA), or in an oscillator circuit so that a precise frequency of oscillation can be generated and changed as needed.

103 citations


Network Information
Related Topics (5)
Capacitor
166.6K papers, 1.4M citations
94% related
Voltage
296.3K papers, 1.7M citations
93% related
CMOS
81.3K papers, 1.1M citations
84% related
Amplifier
163.9K papers, 1.3M citations
84% related
Electric power system
133K papers, 1.7M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023985
20222,105
20211,507
20202,637
20193,217
20183,173