scispace - formally typeset
Search or ask a question
Topic

Inductor

About: Inductor is a research topic. Over the lifetime, 52565 publications have been published within this topic receiving 484068 citations. The topic is also known as: passive two terminal.


Papers
More filters
Journal ArticleDOI
TL;DR: To integrate the advantages of the high voltage gain of a switched-capacitor (SC) converter and excellent output regulation of a switching-mode dc-dc converter, a method of combining the two types of converters is proposed in this paper.
Abstract: In a photovoltaic (PV)- or fuel-cell-based grid-connected power system, a high step-up dc-dc converter is required to boost the low voltage of a PV or fuel cell to a relatively high bus voltage for the downstream dc-ac grid-connected inverter. To integrate the advantages of the high voltage gain of a switched-capacitor (SC) converter and excellent output regulation of a switching-mode dc-dc converter, a method of combining the two types of converters is proposed in this paper. The basic idea is that when the switch is turned on, the inductor is charged, and the capacitors are connected in series to supply the load, and when the switch is turned off, the inductor releases energy to charge multiple capacitors in parallel, whose voltages are controlled by a pulsewidth modulation technique. Thus, a high voltage gain of the dc-dc converter can be obtained with good regulation. Based on this principle, a series of new topologies are derived, and the operating principles and voltage gains of the proposed converters are analyzed. Finally, the design of the proposed converter is given, and the experiment results are provided to verify the theoretical analysis.

331 citations

Journal ArticleDOI
TL;DR: In this paper, current crowding is studied through approximate analytical modeling, and first-order expressions are derived for predicting resistance as a function of frequency, which is validated through comparisons with electromagnetic simulations and compared with measured data taken from a spiral inductor implemented in a silicon-on-sapphire process.
Abstract: The effective trace resistance of a multiturn spiral inductor operating at high frequencies is known to increase dramatically above its dc value, due to proximity effect or current crowding. This phenomenon, which dominates resistance increases due to skin effect, is difficult to analyze precisely and has generally required electromagnetic simulation for quantitative assessment. Current crowding is studied in this paper through approximate analytical modeling, and first-order expressions are derived for predicting resistance as a function of frequency. The results are validated through comparisons with electromagnetic simulations and compared with measured data taken from a spiral inductor implemented in a silicon-on-sapphire process.

330 citations

Journal ArticleDOI
TL;DR: In this paper, a novel high step-up dc/dc converter is presented for renewable energy applications, which consists of a coupled inductor and two voltage multiplier cells, in order to obtain high step up voltage gain.
Abstract: In this paper, a novel high step-up dc/dc converter is presented for renewable energy applications. The suggested structure consists of a coupled inductor and two voltage multiplier cells, in order to obtain high step-up voltage gain. In addition, two capacitors are charged during the switch-off period, using the energy stored in the coupled inductor which increases the voltage transfer gain. The energy stored in the leakage inductance is recycled with the use of a passive clamp circuit. The voltage stress on the main power switch is also reduced in the proposed topology. Therefore, a main power switch with low resistance $R_{{\rm DS} ({\rm ON})}$ can be used to reduce the conduction losses. The operation principle and the steady-state analyses are discussed thoroughly. To verify the performance of the presented converter, a 300-W laboratory prototype circuit is implemented. The results validate the theoretical analyses and the practicability of the presented high step-up converter.

327 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented an efficient inductive power transfer (IPT) system capable of transmitting energy with a dc-to-load efficiency above 77% at 6 MHz across a distance of 30 cm.
Abstract: Inductive power transfer (IPT) systems for transmitting tens to hundreds of watts have been reported for almost a decade. Most of the work has concentrated on the optimization of the link efficiency and has not taken into account the efficiency of the driver. Class-E amplifiers have been identified as ideal drivers for IPT applications, but their power handling capability at tens of megahertz has been a crucial limiting factor, since the load and inductor characteristics are set by the requirements of the resonant inductive system. The frequency limitation of the driver restricts the unloaded Q-factor of the coils and thus the link efficiency. With a suitable driver, copper coil unloaded Q factors of over 1000 can be achieved in the low megahertz region, enabling a cost-effective high Q coil assembly. The system presented in this paper alleviates the use of heavy and expensive field-shaping techniques by presenting an efficient IPT system capable of transmitting energy with a dc-to-load efficiency above 77% at 6 MHz across a distance of 30 cm. To the authors knowledge, this is the highest dc-to-load efficiency achieved for an IPT system without introducing restrictive coupling factor enhancement techniques.

326 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new family of high boost voltage inverters called switched-inductor quasi-Z-source inverters (SL-qZSIs), which is based on the well-known qZSI topology and adds only one inductor and three diodes.
Abstract: This paper deals with a new family of high boost voltage inverters called switched-inductor quasi-Z-source inverters (SL-qZSIs). The proposed SL-qZSI is based on the well-known qZSI topology and adds only one inductor and three diodes. In comparison to the SL-ZSI, for the same input and output voltages, the proposed SL-qZSI provides continuous input current, a common ground with the dc source, reduced the passive component count, reduced voltage stress on capacitors, lower shoot-through current, and lower current stress on inductors and diodes. In addition, the proposed SL-qZSI can suppress inrush current at startup, which might destroy the devices. This paper presents the operating principles, analysis, and simulation results, and compares them with those of the SL-ZSI. To verify the performance of the proposed converter, a laboratory prototype was constructed with 48 Vdc input and an ac output line-to-line voltage of 120 Vrms. The simulation and experimental results verified that the converter has high step-up inversion ability.

323 citations


Network Information
Related Topics (5)
Capacitor
166.6K papers, 1.4M citations
94% related
Voltage
296.3K papers, 1.7M citations
93% related
CMOS
81.3K papers, 1.1M citations
84% related
Amplifier
163.9K papers, 1.3M citations
84% related
Electric power system
133K papers, 1.7M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023985
20222,105
20211,507
20202,637
20193,217
20183,173