scispace - formally typeset
Search or ask a question
Topic

Inductor

About: Inductor is a research topic. Over the lifetime, 52565 publications have been published within this topic receiving 484068 citations. The topic is also known as: passive two terminal.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the properties of a single memristor, as well as ideal memristors in series and parallel, are presented, and simple models are presented which show that these unusual properties are closely related to the internal dynamics of the Memristor's internal dynamics.
Abstract: We present a tutorial on the properties of the new ideal circuit element, a memristor. By definition, a memristor M relates the charge q and the magnetic flux $\phi$ in a circuit, and complements a resistor R, a capacitor C, and an inductor L as an ingredient of ideal electrical circuits. The properties of these three elements and their circuits are a part of the standard curricula. The existence of the memristor as the fourth ideal circuit element was predicted in 1971 based on symmetry arguments, but was clearly experimentally demonstrated just this year. We present the properties of a single memristor, memristors in series and parallel, as well as ideal memristor-capacitor (MC), memristor-inductor (ML), and memristor-capacitor-inductor (MCL) circuits. We find that the memristor has hysteretic current-voltage characteristics. We show that the ideal MC (ML) circuit undergoes non-exponential charge (current) decay with two time-scales, and that by switching the polarity of the capacitor, an ideal MCL circuit can be tuned from overdamped to underdamped. We present simple models which show that these unusual properties are closely related to the memristor's internal dynamics. This tutorial complements the pedagogy of ideal circuit elements (R,C, and L) and the properties of their circuits.

722 citations

Journal ArticleDOI
TL;DR: In this paper, the properties of a single memristor, memristors in series and parallel, as well as ideal MC, MCL and MCL circuits are discussed.
Abstract: We present an introduction to and a tutorial on the properties of the recently discovered ideal circuit element, a memristor. By definition, a memristor M relates the charge q and the magnetic flux in a circuit and complements a resistor R, a capacitor C and an inductor L as an ingredient of ideal electrical circuits. The properties of these three elements and their circuits are a part of the standard curricula. The existence of the memristor as the fourth ideal circuit element was predicted in 1971 based on symmetry arguments, but was clearly experimentally demonstrated just last year. We present the properties of a single memristor, memristors in series and parallel, as well as ideal memristor–capacitor (MC), memristor–inductor (ML) and memristor–capacitor–inductor (MCL) circuits. We find that the memristor has hysteretic current–voltage characteristics. We show that the ideal MC (ML) circuit undergoes non-exponential charge (current) decay with two time scales and that by switching the polarity of the capacitor, an ideal MCL circuit can be tuned from overdamped to underdamped. We present simple models which show that these unusual properties are closely related to the memristor's internal dynamics. This tutorial complements the pedagogy of ideal circuit elements (R, C and L) and the properties of their circuits, and is aimed at undergraduate physics and electrical engineering students.

719 citations

Journal ArticleDOI
TL;DR: This paper proposes transformerless dc-dc converters to achieve high step-up voltage gain without an extremely high duty ratio and develops a prototype circuit to verify the performance.
Abstract: Conventional dc-dc boost converters are unable to provide high step-up voltage gains due to the effect of power switches, rectifier diodes, and the equivalent series resistance of inductors and capacitors. This paper proposes transformerless dc-dc converters to achieve high step-up voltage gain without an extremely high duty ratio. In the proposed converters, two inductors with the same level of inductance are charged in parallel during the switch-on period and are discharged in series during the switch-off period. The structures of the proposed converters are very simple. Only one power stage is used. Moreover, the steady-state analyses of voltage gains and boundary operating conditions are discussed in detail. Finally, a prototype circuit is implemented in the laboratory to verify the performance.

694 citations

Patent
04 Mar 2009
TL;DR: In this article, a wireless power system includes a power source, power receiver, and components thereof, and a parasitic antenna that can improve the coupling to the power source in various modes.
Abstract: A wireless power system includes a power source, power receiver, and components thereof. The system can also include a parasitic antenna that can improve the coupling to the power source in various modes. The antenna can have both a variable capacitor and a variable inductor, and both of those can be changed in order to change characteristics of the matching.

611 citations

01 Jan 1990
TL;DR: Average current mode control may be used effectively to control currents other than inductor current, allowing a much broader range of topological application.
Abstract: Current mode control as usually implemented in switching power supplies actually senses and controls peak inductor current. This gives rise to many serious problems, including poor noise immunity, a need for slope compensation, and peak-to-average current errors which the inherently low current loop gain cannot correct. Average current mode control eliminates these problems and may be used effectively to control currents other than inductor current, allowing a much broader range of topological application.

611 citations


Network Information
Related Topics (5)
Capacitor
166.6K papers, 1.4M citations
94% related
Voltage
296.3K papers, 1.7M citations
93% related
CMOS
81.3K papers, 1.1M citations
84% related
Amplifier
163.9K papers, 1.3M citations
84% related
Electric power system
133K papers, 1.7M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023985
20222,105
20211,507
20202,637
20193,217
20183,173