scispace - formally typeset
Search or ask a question
Topic

Inductor

About: Inductor is a research topic. Over the lifetime, 52565 publications have been published within this topic receiving 484068 citations. The topic is also known as: passive two terminal.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a switched-coupled-inductor quasi-Z-source inverter (SCL-qZSI) is proposed, which integrates a switch-capacitor and a three-winding switched-Coupled Inductive inductor into a conventional qZSI.
Abstract: Z-source inverters have become a research hotspot because of their single-stage buck–boost inversion ability, and better immunity to EMI noises. However, their boost gains are limited, because of higher component-voltage stresses and poor output power quality, which results from the tradeoff between the shoot-through interval and the modulation index. To overcome these drawbacks, a new high-voltage boost impedance-source inverter called a switched-coupled-inductor quasi-Z-source inverter (SCL-qZSI) is proposed, which integrates a switched-capacitor and a three-winding switched-coupled inductor (SCL) into a conventional qZSI. The proposed SCL-qZSI adds only one capacitor and two diodes to a classical qZSI, and even with a turns ratio of 1, it has a stronger voltage boost-inversion ability than existing high-voltage boost (q)ZSI topologies. Therefore, compared with other (q)ZSIs for the same input and output voltages, the proposed SCL-qZSI utilizes higher modulation index with lower component-voltage stresses, has better spectral performance, and has a lower input inductor current ripple and flux density swing or, alternately, it can reduce the number of turns or size of the input inductor. The size of the coupled inductor and the total number of turns required for three windings are comparable to those of a single inductor in (q)ZSIs. To validate its advantages, analytical, simulation, and experimental results are also presented.

129 citations

Patent
29 Aug 1997
TL;DR: In this article, a method and apparatus for ramping current in an electromagnet in which a coil is used to generate the magnetic field provides rapid changes in the generated magnetic field.
Abstract: A method and apparatus for ramping current in an electromagnet in which a coil is used to generate the magnetic field provides rapid changes in the generated magnetic field. The method allows a change in current in the coil to be accomplished more rapidly than by applying a step change in voltage, when superconducting coils subject to quenching are used or when nonsuperconducting coils subject to other physical limitations are used. The method requires that both the current I(t) through the coil and the first derivative of the current vary with respect to time t during the ramping period, so that magnitude of the derivative of the current is higher when the magnitude of applied current is lower, lower when the magnitude of the applied current is higher. One variation of this method supplies (or removes) a constant amount of power from the magnetic field of the magnet, while another variation compensates for both self-generated eddy current losses and self-generated high field effects. The method can be used to guide a magnetic seed and in other applications. The apparatus includes, in its most general form, an electromagnetic coil, a generator for applying an initial current to the coil, and a processor controlling the generator that causes the current to ramp from an initial to a final value in accordance with the methods described above.

129 citations

Journal ArticleDOI
TL;DR: In this article, a phase shift-control-scheme-based TEM with the use of the market available controller IC such as UC3895 is proposed, which realizes phase-shifted control for the FB cell to achieve zero voltage switching.
Abstract: A family of isolated buck-boost dc/dc converter for wide input-voltage range is proposed in this paper, and the full-bridge (FB) boost converter, being one of the typical topologies, is analyzed. Due to the existence of the resonant inductor (including the leakage inductor), the FB-boost converter can only adopt the two-edge-modulation (TEM) scheme with the FB cell being leading-edge modulated and the boost cell being trailing-edge modulated to minimize the inductor current ripple over the input-voltage range, and a phase-shift-control-scheme-based TEM with the use of the market available controller IC such as UC3895 is proposed, which realizes phase-shifted control for the FB cell to achieve zero-voltage switching. In order to improve the reliability and efficiency of the FB-boost converter, a three-mode dual-frequency control scheme is proposed, in which the FB-boost converter operates in boost, FB-boost and FB modes in low, medium and high input voltage regions, respectively, and for which the expression of the inductor current ripple is derived in this paper. As the input voltage in the FB-boost mode is close to the output voltage, the inductor current ripple in this mode is much smaller than that in the other modes, and the switching frequency of the boost cell in this mode can be lowered to one-(2N+1)th of the preset switching frequency to reduce the switching loss, and hence, to improve the efficiency. A 250-500 V input, 360 V output, and 6 kW rated power prototype is fabricated to verify the effectiveness of the design and control method. The average efficiency over the input-voltage range is 96.5%, and the highest efficiency attained is 97.2%.

129 citations

Patent
15 Feb 1995
TL;DR: An integrated circuit having a monolithic device such as an inductor suspended over a pit in the substrate to reduce parasitic capacitances and enhance the self-resonant frequency of the inductor was proposed in this article.
Abstract: An integrated circuit having a monolithic device such as an inductor suspended over a pit in the substrate to reduce parasitic capacitances and enhance the self-resonant frequency of the inductor.

129 citations

Journal ArticleDOI
TL;DR: In this paper, a model for low-AC-resistance planar or foil-wound inductors constructed using a quasidistributed gap comprising multiple small gaps that approximate a distributed gap is presented.
Abstract: Low-AC-resistance planar or foil-wound inductors constructed using a quasidistributed gap comprising multiple small gaps that approximate a distributed gap are analyzed. Finite-element simulations are used systematically to develop a model broadly applicable to the design of such quasidistributed gap inductors. It is shown that a good approximation of a distributed gap is realized if the ratio of gap pitch to spacing between gap and conductor is less than four, or if the gap pitch is comparable to a skin depth or smaller. Large gaps can reduce AC resistance, but for most practical designs gap length has little effect. A closed-form expression, which closely approximates the AC resistance factor for a wide range of designs, is developed. The methods are illustrated with an inductor for a high-ripple-current fast-response voltage regulator module (VRM) for microprocessor power delivery.

129 citations


Network Information
Related Topics (5)
Capacitor
166.6K papers, 1.4M citations
94% related
Voltage
296.3K papers, 1.7M citations
93% related
CMOS
81.3K papers, 1.1M citations
84% related
Amplifier
163.9K papers, 1.3M citations
84% related
Electric power system
133K papers, 1.7M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023985
20222,105
20211,507
20202,637
20193,217
20183,173