scispace - formally typeset
Search or ask a question
Topic

Inertia

About: Inertia is a research topic. Over the lifetime, 12006 publications have been published within this topic receiving 164291 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the influence of both viscous dissipation and fluid inertia on the property measurements in oscillatory sliding plate rheometry is investigated, and a unified criterion for avoiding measurement errors is provided.
Abstract: For liquids with high viscosity and low thermal conductivity, viscous dissipation can cause appreciable errors in rheological property measurements. Here, the influences of both viscous dissipation and fluid inertia on the property measurements in oscillatory sliding plate rheometry are investigated. For Newtonian fluids, Bird (1965) solved the combined problem analytically, but only for high frequencies. Here his solution is extended to any frequencies. Also, the equations of motion and energy are solved for linear viscoelastic fluids, and new analytical solutions for the velocity and temperature profiles are given. In both Newtonian and linear viscoelastic fluids, the temperature rise in the gap increases with frequency. The location of the maximum temperature shifts from the mid-plane at low frequency towards the moving wall at high frequency. The fluid inertia increases the viscous dissipation in both fluids. By solving the combined problem, this paper simplifies rheometer design by providing one unified criterion for avoiding measurement errors. Operating limits are presented graphically for minimizing the effects of both fluid inertia and viscous dissipation in oscillatory sliding plate rheometry.

45 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of rotatory inertia, shear deformation and axial deformation of non-circular arches are derived and solved numerically to obtain frequencies and mode shapes.

45 citations

Journal ArticleDOI
TL;DR: In this paper, a continuum elasticity theory is used to simulate dispersive wave propagation with respect to a periodic laminate, where the fourth-order governing equations are rewritten in two sets of coupled second-order equations and the unknowns are the macroscopic displacements and the microscopic displacements.
Abstract: Dispersive wave propagation is simulated with a continuum elasticity theory that incorporates gradients of strain and inertia. The additional parameters are the Representative Volume Element (RVE) sizes in statics and dynamics, respectively. For the special case of a periodic laminate, expressions for these two RVE sizes can be provided based on the properties of the two components. The fourth-order governing equations are rewritten in two sets of coupled second-order equations, whereby the two sets of unknowns are the macroscopic displacements and the microscopic displacements. The resulting formulation is thus a true multi-scale continuum. In a numerical wave propagation example it is shown that the higher-order continuum model provides an excellent approximation of an explicit model of the heterogeneous laminate.

45 citations

Journal ArticleDOI
TL;DR: In this article, the problem of hydrodynamic lubrication under conditions of suddenly applied loads is investigated and a theory is developed and compared to known exact solutions in the simple squeeze-film case.
Abstract: The problem of hydrodynamic lubrication under conditions of suddenly applied loads is of practical importance and theoretical interest. For example, such conditions may occur if a turbine blade fractures. From a theoretical point of view, the classical theory of Reynolds, which is quasi-steady, may not be applicable. Reynolds' equation does not depend on bearing surface accelerations, which may be considerable, but only on bearing surfaces1 velocities. A theory is developed and compared to known exact solutions in the simple squeeze-film case. The theory is then applied to the case of a massive rotor simply supported by a short bearing, to which a large impulsive load is applied about the steady condition. Rotor trajectories are computed and in many instances a large difference is observed between the behavior predicted by the Reynolds equation and the improved theory. Results show that fluid inertia, not included in Reynolds' theory, has the desirable effect of suppressing the trajectory amplitude due to...

45 citations

Journal ArticleDOI
TL;DR: The theoretical analysis shows that even though the moment of inertia and damping are produced by the spin-orbit coupling, and the expression for them have common features, they are caused by very different electronic structure mechanisms.
Abstract: An essential property of magnetic devices is the relaxation rate in magnetic switching which strongly depends on the energy dissipation. This is described by the Landau-Lifshitz-Gilbert equation and the well known damping parameter, which has been shown to be reproduced from quantum mechanical calculations. Recently the importance of inertia phenomena have been discussed for magnetisation dynamics. This magnetic counterpart to the well-known inertia of Newtonian mechanics, represents a research field that so far has received only limited attention. We present and elaborate here on a theoretical model for calculating the magnetic moment of inertia based on the torque-torque correlation model. Particularly, the method has been applied to bulk itinerant magnets and we show that numerical values are comparable with recent experimental measurements. The theoretical analysis shows that even though the moment of inertia and damping are produced by the spin-orbit coupling, and the expression for them have common features, they are caused by very different electronic structure mechanisms. We propose ways to utilise this in order to tune the inertia experimentally, and to find materials with significant inertia dynamics.

45 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
87% related
Differential equation
88K papers, 2M citations
83% related
Boundary value problem
145.3K papers, 2.7M citations
81% related
Finite element method
178.6K papers, 3M citations
81% related
Control theory
299.6K papers, 3.1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023886
20221,975
2021443
2020562
2019609
2018566