scispace - formally typeset
Search or ask a question
Topic

Inertia

About: Inertia is a research topic. Over the lifetime, 12006 publications have been published within this topic receiving 164291 citations.


Papers
More filters
Journal ArticleDOI
01 Jun 2011
TL;DR: The empirical studies on fifteen static test problems, a dynamic function and a real world engineering problem show that the proposed particle swarm optimization model is quite effective in adapting the value of w in the dynamic and static environments.
Abstract: Particle swarm optimization (PSO) is a stochastic population-based algorithm motivated by intelligent collective behavior of some animals. The most important advantages of the PSO are that PSO is easy to implement and there are few parameters to adjust. The inertia weight (w) is one of PSO's parameters originally proposed by Shi and Eberhart to bring about a balance between the exploration and exploitation characteristics of PSO. Since the introduction of this parameter, there have been a number of proposals of different strategies for determining the value of inertia weight during a course of run. This paper presents the first comprehensive review of the various inertia weight strategies reported in the related literature. These approaches are classified and discussed in three main groups: constant, time-varying and adaptive inertia weights. A new adaptive inertia weight approach is also proposed which uses the success rate of the swarm as its feedback parameter to ascertain the particles' situation in the search space. The empirical studies on fifteen static test problems, a dynamic function and a real world engineering problem show that the proposed particle swarm optimization model is quite effective in adapting the value of w in the dynamic and static environments.

689 citations

Journal Article
TL;DR: In this article, a mathematical model for predicting the inertial properties of a human body in various positions was developed, and twenty-five standard anthropometric dimensions were used in the model to predict an individual's center of gravity, moments and products of inertia, principal moments, and principal axes.
Abstract: : A mathematical model for predicting the inertial properties of a human body in various positions was developed. Twenty-five standard anthropometric dimensions are used in the model to predict an individual's center of gravity, moments and products of inertia, principal moments, and principal axes. The validity of the model was tested by comparing its predictions with experimental data from 66 subjects. The center of gravity was generally predicted within 0.7 inches and moments of inertia within 10 percent. The principal vertical axis was found to deviate from the longitudinal axis of the body by as much as 50 degrees, depending on the body position assumed. A generalized computer program to calculate the inertial properties of a subject in any body position is presented. The inertial properties of five composite subjects in each of 31 body positions is offered as a design guide. IBM 7094 digital computer programs are appended.

646 citations

Journal ArticleDOI
TL;DR: In this article, a virtual synchronous generator (VSG) with alternating moment of inertia (OMO) was proposed to enhance the response of the virtual machine in tracking the steady-state frequency.
Abstract: The virtual synchronous generator (VSG) is a control scheme applied to the inverter of a distributed generating unit to support power system stability by imitating the behavior of a synchronous machine. The VSG design of our research incorporates the swing equation of a synchronous machine to express a virtual inertia property. Unlike a real synchronous machine, the parameters of the swing equation of the VSG can be controlled in real time to enhance the fast response of the virtual machine in tracking the steady-state frequency. Based on this concept, the VSG with alternating moment of inertia is elaborated in this paper. The damping effect of the alternating inertia scheme is investigated by transient energy analysis. In addition, the performance of the proposed inertia control in stability of nearby machines in power system is addressed. The idea is supported by simulation and experimental results, which indicates remarkable performance in the fast damping of oscillations.

644 citations

Book
29 Dec 1999
TL;DR: In this paper, a two-dimensional theory of Corners and junctions is proposed for growing cracks in three space dimensions, and two dimensions of the junction and junction are modeled with configurational forces.
Abstract: Configurational Forces within a Classical Context.- Kinematics.- Standard Forces. Working.- Migrating Control Volumes. Stationary and Time-Dependent Changes in Reference Configuration.- Configurational Forces.- Thermodynamics. Relation Between Bulk Tension and Energy. Eshelby Identity.- Inertia and Kinetic Energy. Alternative Versions of the Second Law.- Change in Reference Configuration.- Elastic and Thermoelastic Materials.- The Use of Configurational Forces to Characterize Coherent Phase Interfaces.- Interface Kinematics.- Interface Forces. Second Law.- Inertia. Basic Equations for the Interface.- An Equivalent Formulation of the Theory. Infinitesimal Deformations.- Formulation within a Classical Context.- Coherent Phase Interfaces.- Evolving Interfaces Neglecting Bulk Behavior.- Evolving Surfaces.- Configurational Force System. Working.- Second Law.- Constitutive Equations. Evolution Equation for the Interface.- Two-Dimensional Theory.- Coherent Phase Interfaces wtih Interfacial Energy and Deformation.- Theory Neglecting Standard Interfacial Stress.- General Theory with Standard and Configurational Stress within the Interface.- Two-Dimensional Theory with Standard and Configurational Stress within the Interface.- Solidification.- Solidification. The Stefan Condition as a Consequence of the Configurational Force Balance.- Solidification with Interfacial Energy and Entropy.- Fracture.- Cracked Bodies.- Motions.- Forces. Working.- The Second Law.- Basic Results for the Crack Tip.- Constitutive Theory for Growing Cracks.- Kinking and Curving of Cracks. Maximum Dissipation Criterion.- Fracture in Three Space Dimensions (Results).- Two-Dimensional Theory of Corners and Junctions Neglecting Inertia.- Preliminaries. Transport Theorems.- Thermomechanical Theory of Junctions and Corners.

628 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
87% related
Differential equation
88K papers, 2M citations
83% related
Boundary value problem
145.3K papers, 2.7M citations
81% related
Finite element method
178.6K papers, 3M citations
81% related
Control theory
299.6K papers, 3.1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023886
20221,975
2021443
2020562
2019609
2018566