scispace - formally typeset
Search or ask a question
Topic

Inertia

About: Inertia is a research topic. Over the lifetime, 12006 publications have been published within this topic receiving 164291 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the propagation at high Reynolds number of a heavy, axisymmetric gravity current of given initial volume over a horizontal boundary is considered in both rotating and non-rotating situations.
Abstract: The propagation at high Reynolds number of a heavy, axisymmetric gravity current of given initial volume over a horizontal boundary is considered in both rotating and non-rotating situations. The investigation combines experiments with theoretical predictions by both shallow-water approximations and numerical solutions of the full axisymmetric equations. Attention is focused on cases when the initial ratio of Coriolis to inertia forces is small. The experiments were performed by quickly releasing a known cylindrical volume of dense salt water of 2 m diameter at the centre of a circular tank of diameter 13 m containing fresh ambient water of typical depth 80 cm. The propagation of the current was recorded for different initial values of the salt concentration, the volume of released fluid, the ratio of the initial height of the current to the ambient depth, and the rate of rotation. A major feature of the rotating currents was the attainment of a maximum radius of propagation. Thereafter a contraction–relaxation motion of the body of fluid and a regular series of outwardly propagating pulses was observed. The frequency of these pulses is slightly higher than inertial, and the amplitude is of the order of magnitude of half the maximum radius. Theoretical predictions of the corresponding gravity currents were also obtained by (i) previously developed shallow-water approximations (Ungarish & Huppert 1998) and (ii) a specially developed finite-difference code based on the full axisymmetric Navier–Stokes equations. The ‘numerical experiments’ provided by this code are needed to capture details of the flow field (such as the non-smooth shape of the interface, the vertical dependence of the velocity field) which are not reproduced by the shallow-water model and are very difficult for, or outside the range of, accurate experimental measurement. The comparisons and discussion provide insight into the flow field and indicate the advantages and limitations of the verified simulation tools.

74 citations

Journal ArticleDOI
TL;DR: A fully coupled finite-element method is used to investigate the steady flow of a viscous fluid through a thin-walled elastic tube mounted between two rigid tubes, which induces an additional local pressure drop when the tube buckles and its cross-sectional area is reduced.
Abstract: A fully coupled finite-element method is used to investigate the steady flow of a viscous fluid through a thin-walled elastic tube mounted between two rigid tubes. The steady three-dimensional Navier–Stokes equations are solved simultaneously with the equations of geometrically nonlinear Kirchhoff–Love shell theory. If the transmural (internal minus external) pressure acting on the tube is sufficiently negative then the tube buckles non-axisymmetrically and the subsequent large deformations lead to a strong interaction between the fluid and solid mechanics. The main effect of fluid inertia on the macroscopic behaviour of the system is due to the Bernoulli effect, which induces an additional local pressure drop when the tube buckles and its cross-sectional area is reduced. Thus, the tube collapses more strongly than it would in the absence of fluid inertia. Typical tube shapes and flow fields are presented. In strongly collapsed tubes, at finite values of the Reynolds number, two ’jets‘ develop downstream of the region of strongest collapse and persist for considerable axial distances. For sufficiently high values of the Reynolds number, these jets impact upon the sidewalls and spread azimuthally. The consequent azimuthal transport of momentum dramatically changes the axial velocity profiles, which become approximately $\uTheta$-shaped when the flow enters the rigid downstream pipe. Further convection of momentum causes the development of a ring-shaped velocity profile before the ultimate return to a parabolic profile far downstream.

74 citations

Journal ArticleDOI
TL;DR: In this article, the influence of inertia in the particle dynamics for the noise induced, directed current was investigated by means of two approximation schemes: a unified colored noise approximation and a pathintegral approach.
Abstract: The colored ~Ornstein-Uhlenbeck! noise-driven nonequilibrium dynamics of massive damped Brownian particles in a periodic but asymmetric potential ~ratchet! is investigated Our special focus is on the influence of inertia in the particle dynamics for the noise induced, directed current By means of two approximation schemes ~a unified colored noise approximation and a path-integral approach! and by numerical matrixcontinued-fraction evaluations of the inherent, three-dimensional Fokker-Planck dynamics as well as by direct simulations of the stochastic differential equations we examine the dynamics at various inertial strengths For the case of a large mass we find current reversal with respect to both a variation of the mass and of the noise-correlation time Possibilities for efficient mass-sensitive scenarios for separation of particles are discussed @S1063-651X~99!00802-8#

74 citations

Journal ArticleDOI
TL;DR: A general geometric model is developed which permits segment inertial properties to be derived from cadavers by segmentation, and from living individuals using linear external measurements, and it is shown that recordings of resulting ground reaction forces may be quite closely simulated by predictive dynamic modelling.
Abstract: Studies of the dynamics of locomotor performances depend on knowledge of the distribution of body mass within and between limb segments. However, these data are difficult to derive. Segment mass properties have generally been estimated by modelling limbs as truncated cones, but this approach fails to take into account that some segments are of elliptical, not circular, cross section; and further, the profiles of real segments are generally curved. Thus, they are more appropriately modelled as solids of revolution, described by the rotation in space of convex or concave curves, and the possibility of an elliptical cross section needs to be taken into account. In this project we have set out to develop a general geometric model which can take these factors into account, and permit segment inertial properties to be derived from cadavers by segmentation, and from living individuals using linear external measurements. We present a model which may be described by up to four parameters, depending o the profile and serial cross section (circular or ellipsoidal) of the individual segments. The parameters are obtained from cadavers using a simplified complex-pendulum technique, and from intact specimens by calculation from measurements of segment diameters and lengths. From the parameters, the center of mass, moments of inertia, and radii of gyration may be derived, using simultaneous equations. Inertial properties of the body segments of four Pan troglodytes and a single Pongo were determined, and contrasted to comparable findings for humans. Using our approach, the mass distribution characteristics of any individual or species may be represented by a rigid-link segment model or “android.” If this is made to move according to motion functions derived from a real performance of the individual represented, we show that recordings of resulting ground reaction forces may be quite closely simulated by predictive dynamic modelling. © 1996 Wiley-Liss, Inc.

74 citations

Proceedings ArticleDOI
02 Jun 1999
TL;DR: In this paper, an adaptive attitude control law is presented that realizes linear closed-loop dynamics in the attitude error vector, where the modified Rodrigues parameters (MRPs) are used as the kinematic variables since they are nonsingular for all possible rotations.
Abstract: An adaptive attitude control law is presented that realizes linear closed-loop dynamics in the attitude error vector. The modified Rodrigues parameters (MRPs) are used as the kinematic variables since they are nonsingular for all possible rotations. The desired linear closed-loop dynamics can be of either PD or PID form. Only a crude estimate of the moment of inertia matrix is assumed to be known. An open-loop nonlinear control law is presented which yields linear closed-loop dynamics in terms of the MRPs. An adaptive control law is developed which asymptotically enforces these desired linear closed-loop dynamics in the presence of large inertia and external disturbance model errors. Since the unforced closed-loop dynamics are nominally linear, standard linear control methodologies can be employed to satisfy design requirements. The adaptive control law is shown to track the desired linear performance asymptotically without requiring a priori knowledge of either the inertia matrix or external disturbance.

74 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
87% related
Differential equation
88K papers, 2M citations
83% related
Boundary value problem
145.3K papers, 2.7M citations
81% related
Finite element method
178.6K papers, 3M citations
81% related
Control theory
299.6K papers, 3.1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023886
20221,975
2021443
2020562
2019609
2018566