scispace - formally typeset
Search or ask a question

Showing papers on "Inertial measurement unit published in 2015"


Journal ArticleDOI
Wonho Kang1, Youngnam Han1
TL;DR: A smartphone-based pedestrian dead reckoning, SmartPDR, which tracks pedestrians through typical dead reckoning approach using data from inertial sensors embedded in smartphones, and validates its practical usage through real deployment.
Abstract: Indoor pedestrian tracking extends location-based services to indoor environments where GPS signal is rarely detected. Typical indoor localization method is Wi-Fi-based positioning system, which is practical showing accuracy and extending coverage. However, it involves significant costs of installing and managing wireless access points. A practical indoor pedestrian-tracking approach should consider the absence of any infrastructure or pretrained database. In this paper, we present a smartphone-based pedestrian dead reckoning, SmartPDR, which tracks pedestrians through typical dead reckoning approach using data from inertial sensors embedded in smartphones. SmartPDR does not require any complex and expensive additional device or infrastructure that most existing pedestrian tracking systems rely on. The proposed system was implemented on off-the-shelf smartphones and the performance was evaluated in several buildings. Despite inherent localization errors from low-cost noisy sensors and complicated human movements, SmartPDR successfully tracks indoor user's location, which is confirmed from the experimental results with reasonable location accuracy. Indoor pedestrian tracking system using smartphone inertial sensors can be a promising methodology validating its practical usage through real deployment.

471 citations


Proceedings ArticleDOI
13 Jul 2015
TL;DR: In this article, a preintegration theory is proposed to summarize hundreds of inertial measurements into a single relative motion constraint, and the measurements are integrated in a local frame, which eliminates the need to repeat the integration when the linearization point changes while leaving the opportunity for belated bias corrections.
Abstract: Recent results in monocular visual-inertial navigation (VIN) have shown that optimization-based approaches outperform filtering methods in terms of accuracy due to their capability to relinearize past states. However, the improvement comes at the cost of increased computational complexity. In this paper, we address this issue by preintegrating inertial measurements between selected keyframes. The preintegration allows us to accurately summarize hundreds of inertial measurements into a single relative motion constraint. Our first contribution is a preintegration theory that properly addresses the manifold structure of the rotation group and carefully deals with uncertainty propagation. The measurements are integrated in a local frame, which eliminates the need to repeat the integration when the linearization point changes while leaving the opportunity for belated bias corrections. The second contribution is to show that the preintegrated IMU model can be seamlessly integrated in a visual-inertial pipeline under the unifying framework of factor graphs. This enables the use of a structureless model for visual measurements, further accelerating the computation. The third contribution is an extensive evaluation of our monocular VIN pipeline: experimental results confirm that our system is very fast and demonstrates superior accuracy with respect to competitive state-of-the-art filtering and optimization algorithms, including off-the-shelf systems such as Google Tango

395 citations


Journal ArticleDOI
02 Sep 2015-Sensors
TL;DR: Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait.
Abstract: With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability.

290 citations


Journal ArticleDOI
06 Aug 2015-Sensors
TL;DR: A novel complementary filter for MAVs that fuses together gyroscope data with accelerometer and magnetic field readings and outperforms other common methods, using publicly available datasets with ground-truth data recorded during a real flight experiment of a micro quadrotor helicopter.
Abstract: Orientation estimation using low cost sensors is an important task for Micro Aerial Vehicles (MAVs) in order to obtain a good feedback for the attitude controller. The challenges come from the low accuracy and noisy data of the MicroElectroMechanical System (MEMS) technology, which is the basis of modern, miniaturized inertial sensors. In this article, we describe a novel approach to obtain an estimation of the orientation in quaternion form from the observations of gravity and magnetic field. Our approach provides a quaternion estimation as the algebraic solution of a system from inertial/magnetic observations. We separate the problems of finding the "tilt" quaternion and the heading quaternion in two sub-parts of our system. This procedure is the key for avoiding the impact of the magnetic disturbances on the roll and pitch components of the orientation when the sensor is surrounded by unwanted magnetic flux. We demonstrate the validity of our method first analytically and then empirically using simulated data. We propose a novel complementary filter for MAVs that fuses together gyroscope data with accelerometer and magnetic field readings. The correction part of the filter is based on the method described above and works for both IMU (Inertial Measurement Unit) and MARG (Magnetic, Angular Rate, and Gravity) sensors. We evaluate the effectiveness of the filter and show that it significantly outperforms other common methods, using publicly available datasets with ground-truth data recorded during a real flight experiment of a micro quadrotor helicopter.

274 citations


Proceedings ArticleDOI
26 May 2015
TL;DR: This paper presents a tightly-coupled nonlinear optimization-based monocular VINS estimator for autonomous rotorcraft MAVs that allows the MAV to execute trajectories at 2 m/s with roll and pitch angles up to 30 degrees.
Abstract: There have been increasing interests in the robotics community in building smaller and more agile autonomous micro aerial vehicles (MAVs). In particular, the monocular visual-inertial system (VINS) that consists of only a camera and an inertial measurement unit (IMU) forms a great minimum sensor suite due to its superior size, weight, and power (SWaP) characteristics. In this paper, we present a tightly-coupled nonlinear optimization-based monocular VINS estimator for autonomous rotorcraft MAVs. Our estimator allows the MAV to execute trajectories at 2 m/s with roll and pitch angles up to 30 degrees. We present extensive statistical analysis to verify the performance of our approach in different environments with varying flight speeds.

179 citations


Journal ArticleDOI
TL;DR: This paper presents an approach to combine measurements from inertial sensors (accelerometers and gyroscopes) with time-of-arrival measurements from an ultrawideband (UWB) system for indoor positioning using a tightly coupled sensor fusion approach.
Abstract: In this paper, we present an approach to combine measurements from inertial sensors (accelerometers and gyroscopes) with time-of-arrival measurements from an ultrawideband (UWB) system for indoor positioning. Our algorithm uses a tightly coupled sensor fusion approach, where we formulate the problem as a maximum a posteriori (MAP) problem that is solved using an optimization approach. It is shown to lead to accurate 6-D position and orientation estimates when compared to reference data from an independent optical tracking system. To be able to obtain position information from the UWB measurements, it is imperative that accurate estimates of the UWB receivers' positions and their clock offsets are available. Hence, we also present an easy-to-use algorithm to calibrate the UWB system using a maximum-likelihood (ML) formulation. Throughout this work, the UWB measurements are modeled by a tailored heavy-tailed asymmetric distribution to account for measurement outliers. The heavy-tailed asymmetric distribution works well on experimental data, as shown by analyzing the position estimates obtained using the UWB measurements via a novel multilateration approach.

173 citations


Journal ArticleDOI
TL;DR: A novel Kalman filter for inertial-based attitude estimation was presented, and a significant accuracy improvement was achieved over state-of-the-art approaches, due to a filter design that better matched the basic optimality assumptions of Kalman filtering.
Abstract: Goal: Design and development of a linear Kalman filter to create an inertial-based inclinometer targeted to dynamic conditions of motion. Methods: The estimation of the body attitude (i.e., the inclination with respect to the vertical) was treated as a source separation problem to discriminate the gravity and the body acceleration from the specific force measured by a triaxial accelerometer. The sensor fusion between triaxial gyroscope and triaxial accelerometer data was performed using a linear Kalman filter. Wrist-worn inertial measurement unit data from ten participants were acquired while performing two dynamic tasks: 60-s sequence of seven manual activities and 90 s of walking at natural speed. Stereophotogrammetric data were used as a reference. A statistical analysis was performed to assess the significance of the accuracy improvement over state-of-the-art approaches. Results: The proposed method achieved, on an average, a root mean square attitude error of 3.6° and 1.8° in manual activities and locomotion tasks (respectively). The statistical analysis showed that, when compared to few competing methods, the proposed method improved the attitude estimation accuracy. Conclusion: A novel Kalman filter for inertial-based attitude estimation was presented in this study. A significant accuracy improvement was achieved over state-of-the-art approaches, due to a filter design that better matched the basic optimality assumptions of Kalman filtering. Significance: Human motion tracking is the main application field of the proposed method. Accurately discriminating the two components present in the triaxial accelerometer signal is well suited for studying both the rotational and the linear body kinematics.

155 citations


Journal ArticleDOI
TL;DR: A novel complementary filter is introduced to better preprocess the sensor data from a foot-mounted IMU containing triaxial angular rate sensors, accelerometers, and magnetometers and to estimate the foot orientation without resorting to global positioning system data.
Abstract: This paper proposes a foot-mounted Zero Velocity Update (ZVU) aided Inertial Measurement Unit (IMU) filtering algorithm for pedestrian tracking in indoor environment The algorithm outputs are the foot kinematic parameters, which include foot orientation, position, velocity, acceleration, and gait phase The foot motion filtering algorithm incorporates methods for orientation estimation, gait detection, and position estimation A novel Complementary Filter (CF) is introduced to better pre-process the sensor data from a foot-mounted IMU containing tri-axial angular rate sensors, accelerometers, and magnetometers and to estimate the foot orientation without resorting to GPS data A gait detection is accomplished using a simple states detector that transitions between states based on acceleration and angular rate measurements Once foot orientation is computed, position estimates are obtained by using integrating acceleration and velocity data, which has been corrected at step stance phase for drift using an implemented ZVU algorithm, leading to a position accuracy improvementWe illustrate our findings experimentally by using of a commercial IMU during regular human walking trials in a typical public building Experiment results show that the positioning approach achieves approximately a position accuracy around 04% and improves the performance regarding recent works of literature

145 citations


Journal ArticleDOI
TL;DR: A novel approach based on a kinematic arm model and the Unscented Kalman Filter is described, which incorporates gyroscope and accelerometer random drift models, imposes physical constraints on the range of motion for each joint, and uses zero-velocity updates to mitigate the effect of sensor drift.
Abstract: Traditionally, human movement has been captured primarily by motion capture systems. These systems are costly, require fixed cameras in a controlled environment, and suffer from occlusion. Recently, the availability of low-cost wearable inertial sensors containing accelerometers, gyroscopes, and magnetometers have provided an alternative means to overcome the limitations of motion capture systems. Wearable inertial sensors can be used anywhere, cannot be occluded, and are low cost. Several groups have described algorithms for tracking human joint angles. We previously described a novel approach based on a kinematic arm model and the Unscented Kalman Filter (UKF). Our proposed method used a minimal sensor configuration with one sensor on each segment. This paper reports significant improvements in both the algorithm and the assessment. The new model incorporates gyroscope and accelerometer random drift models, imposes physical constraints on the range of motion for each joint, and uses zero-velocity updates to mitigate the effect of sensor drift. A high-precision industrial robot arm precisely quantifies the performance of the tracker during slow, normal, and fast movements over continuous 15-min recording durations. The agreement between the estimated angles from our algorithm and the high-precision robot arm reference was excellent. On average, the tracker attained an RMS angle error of about $3^\circ$ for all six angles. The UKF performed slightly better than the more common Extended Kalman Filter

137 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present an approach for a quadrocoper-based micro UAV that estimates the wind vector (speed and direction) in real-time based on measurement data of its on-board sensors only.
Abstract: This paper presents an approach for a quadrocoper-based micro unmanned aerial vehicle (UAV) that estimates the wind vector (speed and direction) in real-time based on measurement data of its on-board sensors only. This method does not need any additional airspeed sensor or dedicated anemometer, and thus the micro UAV's valuable payload remains free for other sensors. Wind tunnel and field tests were used to evaluate the performance of the approach. In order to quantify its accuracy, experiments are presented where data was collected with an anemometer placed in an open field with the micro UAV in flight following a predefined trajectory around the anemometer and hovering at a defined position close to it.

134 citations


Journal ArticleDOI
25 Dec 2015-Sensors
TL;DR: An evaluation of the accuracy of different feature detection algorithms described in the literature for the analysis of different phases of swimming, specifically starts, turns and free-swimming is focused on.
Abstract: Technical evaluation of swimming performance is an essential factor of elite athletic preparation. Novel methods of analysis, incorporating body worn inertial sensors (i.e., Microelectromechanical systems, or MEMS, accelerometers and gyroscopes), have received much attention recently from both research and commercial communities as an alternative to video-based approaches. This technology may allow for improved analysis of stroke mechanics, race performance and energy expenditure, as well as real-time feedback to the coach, potentially enabling more efficient, competitive and quantitative coaching. The aim of this paper is to provide a systematic review of the literature related to the use of inertial sensors for the technical analysis of swimming performance. This paper focuses on providing an evaluation of the accuracy of different feature detection algorithms described in the literature for the analysis of different phases of swimming, specifically starts, turns and free-swimming. The consequences associated with different sensor attachment locations are also considered for both single and multiple sensor configurations. Additional information such as this should help practitioners to select the most appropriate systems and methods for extracting the key performance related parameters that are important to them for analysing their swimmers’ performance and may serve to inform both applied and research practices.

Journal ArticleDOI
TL;DR: Experimental results show that the proposed calibration scheme and observation equation during gimbals rotation can substantially reduce velocity error on static base and the position accuracy of long-term navigation under moving base is also significantly increased.
Abstract: Navigation accuracy of an inertial navigation system can be significantly enhanced by rotating inertial measurement unit with gimbals. Therefore, nonorthogonal angles of gimbals, which are coupled into the navigation error during rotation, should be calibrated and compensated effectively. In this paper, the relationship model of nonorthogonal angles and navigation error is established. Then, the calibration scheme and observation equation during gimbals rotation is proposed. Proved by a piecewise constant system method, all of the error parameters are observable and can be estimated by an extended Kalman filter. Experimental results show that compared with the traditional method, the proposed method can substantially reduce velocity error on static base. Moreover, the position accuracy of long-term navigation under moving base is also significantly increased.

Journal ArticleDOI
TL;DR: A nano quadrotor helicopter which weighs about only 45 grams and has a diameter less than 0.15 m is employed for the autonomous flight control development in GPS-denied environments and trajectory tracking ability is achieved with the help of a modified visual simultaneous localization and mapping (SLAM) algorithm.
Abstract: In this paper, a nano quadrotor helicopter which weighs about only 45 grams and has a diameter less than 0.15 m is employed for the autonomous flight control development in GPS-denied environments. Due to the very limited payload ability of the helicopter, a micro onboard vision system is designed to provide visual pose measurement. Then the attitude data obtained from a low cost micro inertial measurement unit (IMU) are fused with the visual measurement to provide accurate estimation of the helicopter's translational position and velocity. Nonlinear flight controller is designed to hold the quadrotor in a certain position and altitude without external ground motion capture system. Moreover, trajectory tracking ability is achieved with the help of a modified visual simultaneous localization and mapping (SLAM) algorithm. Experimental results are included to demonstrate the good hovering and tracking control performance of the proposed design in GPS-denied indoor and outdoor environments. To our best knowledge, few of previous works have demonstrated autonomous control ability of a quadrotor helicopter weighs less than 50 grams without the help of external ground motion capture system in GPS-denied indoor and outdoor environments.

Proceedings ArticleDOI
15 Jun 2015
TL;DR: In this article, a study on complementary and Kalman filter for real-time tilting measurement using MEMS-based IMU is presented, where the complementary filter algorithm uses low pass filter and high pass filter to deal with the data from accelerometer and gyroscope, while the Kalman Filter takes the tilting angle and gyroscopic bias as system states, combining the angle derived from the accelerometer to estimate the tilts angle.
Abstract: This research investigates real time tilting measurement using Micro-Electro-Mechanical-system (MEMS) based inertial measurement unit (IMU). Accelerometers suffer from errors caused by external accelerations that sums to gravity and make accelerometers based tilting sensing unreliable and inaccurate. Gyroscopes can offset such drawbacks but have data drifting problems. This paper presents a study on complementary and Kalman filter for tilting measurement using MEMS based IMU. The complementary filter algorithm uses low-pass filter and high-pass filter to deal with the data from accelerometer and gyroscope while Kalman filter takes the tilting angle and gyroscope bias as system states, combining the angle derived from the accelerometer to estimate the tilting angle. The study carried out both static and dynamic experiments. The results showed that both Complementary and Kalman filter were less sensitive to variations and almost no signal coupling phenomenon and able to obtain smooth and accurate results.

Journal ArticleDOI
TL;DR: Experimental results show that the proposed EKF based data fusion approach achieves significant localization accuracy improvement over using WiFi localization or PDR systems alone, while it incurs much less computational complexity.
Abstract: Indoor localization systems using WiFi received signal strength (RSS) or pedestrian dead reckoning (PDR) both have their limitations, such as the RSS fluctuation and the accumulative error of PDR. To exploit their complementary strengths, most existing approaches fuse both systems by a particle filter. However, the particle filter is unsuitable for real time localization on resource-limited smartphones, since it is rather time-consuming and computationally expensive. On the other hand, the light computation fusion approaches including Kalman filter and its variants are inapplicable, since an explicit RSS-location measurement equation and the related noise statistics are unavailable. This paper proposes a novel data fusion framework by using an extended Kalman filter (EKF) to integrate WiFi localization with PDR. To make EKF applicable, we develop a measurement model based on kernel density estimation, which enables accurate WiFi localization and adaptive measurement noise statistics estimation. For the PDR system, we design another EKF based on quaternions for heading estimation by fusing gyroscopes and accelerometers. Experimental results show that the proposed EKF based data fusion approach achieves significant localization accuracy improvement over using WiFi localization or PDR systems alone. Compared with a particle filter, the proposed approach achieves comparable localization accuracy, while it incurs much less computational complexity.

Journal ArticleDOI
TL;DR: A systematic review of existing methods for biomechanical analysis of swimming performance using inertial and magnetic sensors indicated that inertial sensors are reliable tools for swimming biomechanicals analyses.
Abstract: The use of contemporary technology is widely recognised as a key tool for enhancing competitive performance in swimming. Video analysis is traditionally used by coaches to acquire reliable biomecha...

Journal ArticleDOI
15 Sep 2015-Sensors
TL;DR: If smartphones are reliable and accurate enough for clinical motion research is determined with the comparison to the gold standard, an industrial robotic arm with an actual standard use inertial motion unit in clinical measurement, an Xsens product.
Abstract: Over the years, smartphones have become tools for scientific and clinical research. They can, for instance, be used to assess range of motion and joint angle measurement. In this paper, our aim was to determine if smartphones are reliable and accurate enough for clinical motion research. This work proposes an evaluation of different smartphone sensors performance and different manufacturer algorithm performances with the comparison to the gold standard, an industrial robotic arm with an actual standard use inertial motion unit in clinical measurement, an Xsens product. Both dynamic and static protocols were used to perform these comparisons. Root Mean Square (RMS) mean values results for static protocol are under 0.3° for the different smartphones. RMS mean values results for dynamic protocol are more prone to bias induced by Euler angle representation. Statistical results prove that there are no filter effect on results for both protocols and no hardware effect. Smartphones performance can be compared to the Xsens gold standard for clinical research.

Journal ArticleDOI
16 Sep 2015-Forests
TL;DR: The aim in the present study was to test the accuracy of various instruments utilizing global satellite navigation systems (GNSS) in motion under forest canopies of varying densities to enable us to get an understanding of the current state-of-the-art in GNSS-based positioning under forestCanopies.
Abstract: A harvester enables detailed roundwood data to be collected during harvesting operations by means of the measurement apparatus integrated into its felling head. These data can be used to improve the efficiency of wood procurement and also replace some of the field measurements, and thus provide both less costly and more detailed ground truth for remote sensing based forest inventories. However, the positional accuracy of harvester-collected tree data is not sufficient currently to match the accuracy per individual trees achieved with remote sensing data. The aim in the present study was to test the accuracy of various instruments utilizing global satellite navigation systems (GNSS) in motion under forest canopies of varying densities to enable us to get an understanding of the current state-of-the-art in GNSS-based positioning under forest canopies. Tests were conducted using several different combinations of GNSS and inertial measurement unit (IMU) mounted

Journal ArticleDOI
TL;DR: A new algorithm that integrates inertial navigation system (INS) and pedestrian dead reckoning (PDR) to combine the advantages of both mechanizations for micro-electro-mechanical systems (MEMS) sensors in pedestrian navigation applications is proposed.
Abstract: Providing an accurate and practical navigation solution anywhere with portable devices, such as smartphones, is still a challenge, especially in environments where global navigation satellite systems (GNSS) signals are not available or are degraded. This paper proposes a new algorithm that integrates inertial navigation system (INS) and pedestrian dead reckoning (PDR) to combine the advantages of both mechanizations for micro-electro-mechanical systems (MEMS) sensors in pedestrian navigation applications. In this PDR/INS integration algorithm, a pseudo-velocity-vector, which is composed of the PDR-derived forward speed and zero lateral and vertical speeds from non-holonomic constraints (NHC), works as an update for the INS to limit the velocity errors. To further limit the drift of MEMS inertial sensors, trilateration-based WiFi positions with small variances are also selected as updates for the PDR/INS integrated system. The experiments illustrate that positioning error is decreased by 60%–75% by using the proposed PDR/INS integrated MEMS solution when compared with PDR. The positioning error is further decreased by 15%–55% if the proposed PDR/INS/WiFi integrated solution is implemented. The average accuracy of the proposed PDR/INS/WiFi integration algorithm achieves 4.5 m in indoor environments.

Proceedings ArticleDOI
26 May 2015
TL;DR: To highlight the usefulness of the proposed mapping framework for autonomous navigation of micro aerial vehicles, it is successfully demonstrated fully autonomous landing including landing-spot detection in real-world experiments.
Abstract: In this paper, we propose a resource-efficient system for real-time 3D terrain reconstruction and landing-spot detection for micro aerial vehicles. The system runs on an on-board smartphone processor and requires only the input of a single downlooking camera and an inertial measurement unit. We generate a two-dimensional elevation map that is probabilistic, of fixed size, and robot-centric, thus, always covering the area immediately underneath the robot. The elevation map is continuously updated at a rate of 1 Hz with depth maps that are triangulated from multiple views using recursive Bayesian estimation. To highlight the usefulness of the proposed mapping framework for autonomous navigation of micro aerial vehicles, we successfully demonstrate fully autonomous landing including landing-spot detection in real-world experiments.

Journal ArticleDOI
16 Oct 2015-Sensors
TL;DR: A newly-developed direct georeferencing system for the guidance, navigation and control of lightweight unmanned aerial vehicles (UAVs), having a weight limit of 5 kg and a size limit of 1.5 m, and for UAV-based surveying and remote sensing applications is presented.
Abstract: In this paper, a newly-developed direct georeferencing system for the guidance, navigation and control of lightweight unmanned aerial vehicles (UAVs), having a weight limit of 5 kg and a size limit of 1.5 m, and for UAV-based surveying and remote sensing applications is presented. The system is intended to provide highly accurate positions and attitudes (better than 5 cm and 0.5°) in real time, using lightweight components. The main focus of this paper is on the attitude determination with the system. This attitude determination is based on an onboard single-frequency GPS baseline, MEMS (micro-electro-mechanical systems) inertial sensor readings, magnetic field observations and a 3D position measurement. All of this information is integrated in a sixteen-state error space Kalman filter. Special attention in the algorithm development is paid to the carrier phase ambiguity resolution of the single-frequency GPS baseline observations. We aim at a reliable and instantaneous ambiguity resolution, since the system is used in urban areas, where frequent losses of the GPS signal lock occur and the GPS measurement conditions are challenging. Flight tests and a comparison to a navigation-grade inertial navigation system illustrate the performance of the developed system in dynamic situations. Evaluations show that the accuracies of the system are 0.05° for the roll and the pitch angle and 0.2° for the yaw angle. The ambiguities of the single-frequency GPS baseline can be resolved instantaneously in more than 90% of the cases.

Proceedings ArticleDOI
07 Sep 2015
TL;DR: Experimental study using data collected from smartphones shows that IDyLL is able to achieve high localization accuracy at low costs, and devise a robust particle filter framework to mitigate identity ambiguity due to the lack of communication capability of conventional luminaries and sensing errors.
Abstract: Location-based services have experienced substantial growth in the last decade. However, despite extensive research efforts, sub-meter location accuracy with low-cost infrastructure continues to be elusive. In this paper, we propose IDyLL -- an indoor localization system using inertial measurement units (IMU) and photodiode sensors on smartphones. Using a novel illumination peak detection algorithm, IDyLL augments IMU-based pedestrian dead reckoning with location fixes. We devise a robust particle filter framework to mitigate identity ambiguity due to the lack of communication capability of conventional luminaries and sensing errors. Experimental study using data collected from smartphones shows that IDyLL is able to achieve high localization accuracy at low costs. Mean location errors of 0.38 m, 0.42 m, and 0.74 m are reported from multiple walks in three buildings with different luminary arrangements, respectively.

Journal ArticleDOI
TL;DR: A series of relevant experiments are systematically conducted on the robotic fish, which prove that the online localization algorithm herein is highly accurate, robust, and practical for the miniature underwater robots with limited computational resources.
Abstract: This paper focuses on the development of an online high-precision probabilistic localization approach for the miniature underwater robots equipped with limited computational capacities and low-cost sensing devices. The localization system takes Monte Carlo localization (MCL) as the main framework and utilizes the onboard camera and low-cost inertial measurement unit (IMU) for information acquisition to provide a decimeter-level precision with 5-Hz refreshing rate in a small space with several artificial landmarks. Specifically, a novel underwater image processing algorithm is introduced to improve the underwater image quality; two key parameters, including a distance factor and an angle factor, are finally calculated to serve as the criteria to MCL. Meanwhile, the accurate orientation and rough odometry of the robot are acquired by onboard IMU. Moreover, a Kalman filter is adopted to filter the key information extracted from the sensors' data processing. In principle, when visual and inertial cues are both obtained, visual information with higher reliability has the priority to be used in the algorithm, which finally results in rapid convergence to the real pose of the robot. A series of relevant experiments are systematically conducted on the robotic fish, which prove that the online localization algorithm herein is highly accurate, robust, and practical for the miniature underwater robots with limited computational resources.

Proceedings ArticleDOI
18 Apr 2015
TL;DR: This work demonstrates that consumer-level EMG and IMU sensing is practical for distant pointing and clicking on large displays, and replicates a previous large display study using a motion capture pointing technique.
Abstract: We describe a mid-air, barehand pointing and clicking interaction technique using electromyographic (EMG) and inertial measurement unit (IMU) input from a consumer armband device. The technique uses enhanced pointer feedback to convey state, a custom pointer acceleration function tuned for angular inertial motion, and correction and filtering techniques to minimize side-effects when combining EMG and IMU input. By replicating a previous large display study using a motion capture pointing technique, we show the EMG and IMU technique is only 430 to 790 ms slower and has acceptable error rates for targets greater than 48 mm. Our work demonstrates that consumer-level EMG and IMU sensing is practical for distant pointing and clicking on large displays.

Journal ArticleDOI
TL;DR: This paper investigated how to fuse data from internal sensors of IMU, and fuse IMU data with Kinect in order to provide robust hand position information compensated for the limitations of those sensors, and found the proposed IMU and Kinect fusion method can provide drift-free and smooth results.

Journal ArticleDOI
07 May 2015-Sensors
TL;DR: A wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF) algorithm, including one three-axis accelerometer, three single-axis gyroscopes, oneThree-axis magnetometer and one microprocessor minimizes the size and cost.
Abstract: Inertial navigation based on micro-electromechanical system (MEMS) inertial measurement units (IMUs) has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoor concrete structures and electronic equipment. The MEMS gyroscope is also used for heading estimation. However, the accuracy of gyroscope is unreliable with time. In this paper, a wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF) algorithm. The proposed multi-sensor system including one three-axis accelerometer, three single-axis gyroscopes, one three-axis magnetometer and one microprocessor minimizes the size and cost. The wearable multi-sensor system was fixed on waist of pedestrian and the quadrotor unmanned aerial vehicle (UAV) for heading estimation experiments in our college building. The results show that the mean heading estimation errors are less 10° and 5° to multi-sensor system fixed on waist of pedestrian and the quadrotor UAV, respectively, compared to the reference path.

Patent
04 May 2015
TL;DR: In this paper, the authors provide techniques for receiving measurements from one or more inertial sensors (i.e., accelerometer and angular rate gyros) attached to a device with a camera or other environment capture capability.
Abstract: Example embodiments of the present disclosure provide techniques for receiving measurements from one or more inertial sensors (i.e. accelerometer and angular rate gyros) attached to a device with a camera or other environment capture capability. In one embodiment, the inertial measurements may be combined with pose estimates obtained from computer vision algorithms executing with real time camera images. Using such inertial measurements, a system may more quickly and efficiently obtain higher accuracy orientation estimates of the device with respect to an object known to be stationary in the environment.

Proceedings ArticleDOI
18 May 2015
TL;DR: The results from these experiments show that the shoe-mounted inertial sensors used in this work can accurately determine transitions between sidewalk and street locations to identify pedestrian risk.
Abstract: This video is a demonstration of the work discussed in our full paper available in the MobiSys'15 proceedings. The video illustrates a sensing technology for fine-grained location classification in an urban environment, for enhancing pedestrian safety. Our system seeks to detect the transitions from sidewalk locations to in-street locations, to enable applications such as alerting texting pedestrians when they step into the street. Existing positioning technologies are not sufficiently precise to allow distinguishing a position on the sidewalk from a position in the street, as explored in our previous work. To this end, we use shoe-mounted inertial sensors for location classification based on surface gradient profile and step patterns. This approach is different from existing shoe sensing solutions that focus on dead reckoning and inertial navigation. The shoe sensors relay inertial sensor measurements to a smartphone, which extracts the step pattern and the inclination of the ground a pedestrian is walking on. This allows detecting transitions such as stepping over a curb or walking down sidewalk ramps that lead into the street. We carried out walking trials in metropolitan environments in United States (Manhattan) and Europe (Turin). The results from these experiments show that we can accurately determine transitions between sidewalk and street locations to identify pedestrian risk.

Journal ArticleDOI
TL;DR: An autonomous integrated indoor navigation system for ground vehicles that fuses inertial sensors, light detection and ranging (LiDAR) sensors, received signal strength observations in wireless local area networks (WLANs), odometry, and predefined occupancy floor maps is introduced.
Abstract: This paper introduces an autonomous integrated indoor navigation system for ground vehicles that fuses inertial sensors, light detection and ranging (LiDAR) sensors, received signal strength (RSS) observations in wireless local area networks (WLANs), odometry, and predefined occupancy floor maps. This paper proposes a solution for the problem of automatic self-alignment and position initialization indoors under the absence of an absolute navigation system such as Global Navigation Satellite Systems (GNSS). The initial tilt angles (roll and pitch) are estimated by an extended Kalman filter (EKF) that uses two horizontal accelerometers as measurements. The initial position and heading estimation is performed using a subimage matching algorithm based on normalized cross-correlation between projected 2-D LiDAR scans and an occupancy floor map of the environment. The ambiguities in position/heading initialization are resolved using RSS. The proposed position/heading estimation module is also utilized in navigation mode as a source of absolute position/heading updates to EKF for enhanced observability. The state predictor is an enhanced 3-D inertial navigation system that utilizes low-cost microelectromechanical system (MEMS)-based reduced inertial sensor set aided by vehicle odometry. In navigation mode, LiDAR scans are used to estimate the vehicle's relative motions using an inertial-aided iterative closest point algorithm. To fuse all available measurements, a multirate multimode EKF design is proposed to correct navigation states and estimate sensor biases. The developed system was tested under a real indoor office environment covered by an IEEE 802.11 WLAN on a mobile robot platform equipped with MEMS inertial sensors, a WLAN interface, a 2-D LiDAR scanner, and a quadrature encoder. Results demonstrated the capabilities of the self-alignment and initialization module and showed average submeter-level positioning accuracy.

Journal ArticleDOI
TL;DR: A novel sensor fusion algorithm is presented that incorporates locally processed tightly coupled GPS/INS-based absolute navigation solutions from each UAV in a relative navigation filter that estimates the baseline separation using integer-fixed relative CP-DGPS and a set of peer-to-peer ranging radios.
Abstract: This paper considers the fusion of carrier-phase differential GPS (CP-DGPS), peer-to-peer ranging radios, and low-cost inertial navigation systems (INS) for the application of relative navigation of small unmanned aerial vehicles (UAVs) in close formation-flight. A novel sensor fusion algorithm is presented that incorporates locally processed tightly coupled GPS/INS-based absolute navigation solutions from each UAV in a relative navigation filter that estimates the baseline separation using integer-fixed relative CP-DGPS and a set of peer-to-peer ranging radios. The robustness of the dynamic baseline estimation performance under conditions that are typically challenging for CP-DGPS alone, such as a high occurrence of phase breaks, poor satellite visibility/geometry due to extreme UAV attitude, and heightened multipath intensity, amongst others, is evaluated using Monte Carlo simulation trials. The simulation environment developed for this work combines a UAV formation flight control simulator with a GPS constellation simulator, stochastic models of the inertial measurement unit (IMU) sensor errors, and measurement noise of the ranging radios. The sensor fusion is shown to offer improved robustness for 3-D relative positioning in terms of 3-D residual sum of squares (RSS) accuracy and increased percentage of correctly fixed phase ambiguities. Moreover, baseline estimation performance is significantly improved during periods in which differential carrier phase ambiguities are unsuccessfully fixed.