scispace - formally typeset
Search or ask a question
Topic

Inertial measurement unit

About: Inertial measurement unit is a research topic. Over the lifetime, 13326 publications have been published within this topic receiving 189083 citations. The topic is also known as: IMU.


Papers
More filters
Book ChapterDOI
01 Jan 2009
TL;DR: This paper forms the camera-IMU relative pose calibration problem in a filtering framework, and proposes a calibration algorithm which requires only a planar camera calibration target and results from simulations and experiments with a low-cost solid-state IMU demonstrate the accuracy.
Abstract: Accurate vision-aided inertial navigation depends on proper calibration of the relative pose of the camera and the inertial measurement unit (IMU). Calibration errors introduce bias in the overall motion estimate, degrading navigation performance - sometimes dramatically. However, existing camera-IMU calibration techniques are difficult, time-consuming and often require additional complex apparatus. In this paper, we formulate the camera-IMU relative pose calibration problem in a filtering framework, and propose a calibration algorithm which requires only a planar camera calibration target. The algorithm uses an unscented Kalman filter to estimate the pose of the IMU in a global reference frame and the 6-DoF transform between the camera and the IMU. Results from simulations and experiments with a low-cost solid-state IMU demonstrate the accuracy of the approach.

52 citations

Proceedings ArticleDOI
01 May 2017
TL;DR: In this article, the authors proposed an approach to combine IMU inertial and UWB ranging measurement for relative positioning between multiple mobile users without the knowledge of the infrastructure by incorporating the UWB and IMU measurement into a probabilistic-based framework, which allows to cooperatively position a group of mobile users and recover from positioning failures.
Abstract: Relative positioning between multiple mobile users is essential for many applications, such as search and rescue in disaster areas or human social interaction. Inertial-measurement unit (IMU) is promising to determine the change of position over short periods of time, but it is very sensitive to error accumulation over long term run. By equipping the mobile users with ranging unit, e.g. ultra-wideband (UWB), it is possible to achieve accurate relative positioning by trilateration-based approaches. As compared to vision or laser-based sensors, the UWB does not need to be with in line-of-sight and provides accurate distance estimation. However, UWB does not provide any bearing information and the communication range is limited, thus UWB alone cannot determine the user location without any ambiguity. In this paper, we propose an approach to combine IMU inertial and UWB ranging measurement for relative positioning between multiple mobile users without the knowledge of the infrastructure. We incorporate the UWB and the IMU measurement into a probabilistic-based framework, which allows to cooperatively position a group of mobile users and recover from positioning failures. We have conducted extensive experiments to demonstrate the benefits of incorporating IMU inertial and UWB ranging measurements.

52 citations

01 Jan 2008
TL;DR: In this paper, a system for estimating position and orientation in real-time, using measurements from vision and inertial sensors, was developed to solve this problem in an unprepared environment.
Abstract: This thesis deals with estimating position and orientation in real-time, using measurements from vision and inertial sensors. A system has been developed to solve this problem in unprepared environ ...

52 citations

Journal ArticleDOI
TL;DR: The reliability of estimated wheelchair kinematics based on a three inertial measurement unit (IMU) configuration was assessed in wheelchair basketball match-like conditions, showing only small deviations of the IMU method compared to the gold standard.

52 citations

Journal ArticleDOI
23 Apr 2017-Sensors
TL;DR: It is concluded that a commercial IMU can be used for quantifying the TUG phases with accuracy sufficient for clinical applications; however, the MDC when using inertial sensors is not necessarily improved over less sophisticated measurement tools.
Abstract: Background: The timed-up-and-go test (TUG) is one of the most commonly used tests of physical function in clinical practice and for research outcomes. Inertial sensors have been used to parse the TUG test into its composite phases (rising, walking, turning, etc.), but have not validated this approach against an optoelectronic gold-standard, and to our knowledge no studies have published the minimal detectable change of these measurements. Methods: Eleven adults performed the TUG three times each under normal and slow walking conditions, and 3 m and 5 m walking distances, in a 12-camera motion analysis laboratory. An inertial measurement unit (IMU) with tri-axial accelerometers and gyroscopes was worn on the upper-torso. Motion analysis marker data and IMU signals were analyzed separately to identify the six main TUG phases: sit-to-stand, 1st walk, 1st turn, 2nd walk, 2nd turn, and stand-to-sit, and the absolute agreement between two systems analyzed using intra-class correlation (ICC, model 2) analysis. The minimal detectable change (MDC) within subjects was also calculated for each TUG phase. Results: The overall difference between TUG sub-tasks determined using 3D motion capture data and the IMU sensor data was 0.90), but less for chair activity (ICC range 0.5–0.9) and typically poor for the turn time (ICC < 0.4). MDC values for total TUG time ranged between 2–4 s or 12–22% of the TUG time measurement. MDC of the sub-task times were higher proportionally, being 20–60% of the sub-task duration. Conclusions: We conclude that a commercial IMU can be used for quantifying the TUG phases with accuracy sufficient for clinical applications; however, the MDC when using inertial sensors is not necessarily improved over less sophisticated measurement tools.

52 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
81% related
Wireless sensor network
142K papers, 2.4M citations
81% related
Control theory
299.6K papers, 3.1M citations
80% related
Convolutional neural network
74.7K papers, 2M citations
79% related
Wireless
133.4K papers, 1.9M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,067
20222,256
2021852
20201,150
20191,181
20181,162