scispace - formally typeset
Search or ask a question
Topic

Inertial navigation system

About: Inertial navigation system is a research topic. Over the lifetime, 14582 publications have been published within this topic receiving 190618 citations. The topic is also known as: intertial guidance system & inertial reference platform.


Papers
More filters
Journal ArticleDOI
TL;DR: Simulation results for the nonlinear dynamics of a Vario X-Treme model-scale helicopter are presented, illustrating the contributions of the proposed aiding techniques for precise UAV navigation.

56 citations

Journal ArticleDOI
02 Jul 2010-Sensors
TL;DR: This paper considers the optimal sensor configuration for inertial navigation systems which have redundant inertial sensors such as gyroscopes and accelerometers and suggests a method which considers both the navigation and FDI performance.
Abstract: This paper considers the optimal sensor configuration for inertial navigation systems which have redundant inertial sensors such as gyroscopes and accelerometers. We suggest a method to determine the optimal sensor configuration which considers both the navigation and FDI performance. Monte Carlo simulations are performed to show the performance of the suggested optimal sensor configuration method.

56 citations

Proceedings ArticleDOI
05 Nov 2012
TL;DR: Robustness in feature tracking and hence in visual measurement generation is achieved by IMU aided feature matching and a two-point relative pose estimation method, to remove outliers from the raw feature point matches.
Abstract: Camera tracking system for augmented reality applications that can operate both indoors and outdoors is described. The system uses a monocular camera, a MEMS-type inertial measurement unit (IMU) with 3-axis gyroscopes and accelerometers, and GPS unit to accurately and robustly track the camera motion in 6 degrees of freedom (with correct scale) in arbitrary indoor or outdoor scenes. IMU and camera fusion is performed in a tightly coupled manner by an error-state extended Kalman filter (EKF) such that each visually tracked feature contributes as an individual measurement as opposed to the more traditional approaches where camera pose estimates are first extracted by means of feature tracking and then used as measurement updates in a filter framework. Robustness in feature tracking and hence in visual measurement generation is achieved by IMU aided feature matching and a two-point relative pose estimation method, to remove outliers from the raw feature point matches. Landmark matching to contain long-term drift in orientation via on the fly user generated geo-tiepoint mechanism is described.

56 citations

Proceedings ArticleDOI
01 Oct 2009
TL;DR: The results demonstrate the feasibility of UTP in large-scale autonomous operations, and the accuracy obtained in postprocessing is shown to be close to that obtained when aiding the INS with an ultra-short baseline (USBL) positioning system.
Abstract: Navigation of underwater vehicles has been and remains a substantial challenge to all platforms. The need for improved accuracy and robustness, sustainability, and de-risking develops with the emergence of new applications, and with the growing acceptance of autonomous underwater vehicles (AUVs) in both military and civilian institutions. One of the main driving factors is the ability to carry out long-duration missions fully autonomous and without supervision from a surface ship. Combined with inertial navigation, the use of one or several transponders on the seabed is an accurate and cost-effective approach toward solving several of these challenges. The principle discussed in this paper is called underwater transponder positioning (UTP), and requires only one transponder due to tight coupling with the inertial navigation system (INS). For many scenarios UTP may be a better alternative than using a long baseline (LBL) system. This paper reports in-situ and post-processed navigation results obtained with a state-of-the-art UTP aided INS, onboard a HUGIN 1000 AUV. The results demonstrate the feasibility of UTP in large-scale autonomous operations. Excellent realtime navigation is achieved, and the accuracy obtained in postprocessing is shown to be close to that obtained when aiding the INS with an ultra-short baseline (USBL) positioning system.

56 citations

Journal ArticleDOI
13 Dec 2019-Science
TL;DR: In this paper, the authors discuss enabling technologies relevant to a set of key functional building blocks of an atom chip-based compact inertial sensor with cold guided atoms, including accurate and reproducible positioning of atoms to initiate a measurement cycle, coherent momentum transfer to the atom wave packets, suppression of propagation-induced decoherence due to potential roughness, on-chip detection, and vacuum dynamics because of its impact on sensor stability.
Abstract: This work reviews the topic of rotation sensing with compact cold atom interferometers. A representative set of compact free-falling cold atom gyroscopes is considered because, in different respects, they establish a rotation-measurement reference for cold guided-atom technologies. This review first discusses enabling technologies relevant to a set of key functional building blocks of an atom chip-based compact inertial sensor with cold guided atoms. These functionalities concern the accurate and reproducible positioning of atoms to initiate a measurement cycle, the coherent momentum transfer to the atom wave packets, the suppression of propagation-induced decoherence due to potential roughness, on-chip detection, and vacuum dynamics because of its impact on sensor stability, which is due to the measurement dead time. Based on the existing enabling technologies, the design of an atom chip gyroscope with guided atoms is formalized using a design case that treats design elements such as guiding, fabrication, scale factor, rotation-rate sensitivity, spectral response, important noise sources, and sensor stability.

56 citations


Network Information
Related Topics (5)
Control system
129K papers, 1.5M citations
82% related
Control theory
299.6K papers, 3.1M citations
81% related
Robustness (computer science)
94.7K papers, 1.6M citations
80% related
Wireless sensor network
142K papers, 2.4M citations
79% related
Object detection
46.1K papers, 1.3M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023309
2022657
2021491
2020889
20191,003
20181,013