scispace - formally typeset
Search or ask a question
Topic

Inertial navigation system

About: Inertial navigation system is a research topic. Over the lifetime, 14582 publications have been published within this topic receiving 190618 citations. The topic is also known as: intertial guidance system & inertial reference platform.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed method can greatly improve the positioning accuracy, as compared with traditional pseudorange+Doppler GPS/IMU tightly coupled navigation systems.
Abstract: This paper presents how the time-differenced carrier phase (TDCP) can be implemented in nondifferential global positioning system/inertial measurement unit (GPS/IMU) tightly coupled navigation systems to improve positioning performance. The TDCP is expressed as a conventional TDCP, representing the carrier phase difference between two successive GPS epochs, and a modified TDCP, which is defined in this paper as the carrier phase difference between current and reference GPS epochs. Both of these two TDCP expressions are implemented in a GPS/IMU tightly coupled navigation Kalman filter as observations: The conventional TDCP with a more accurate approximation of the velocity integration is applied to estimate velocity, whereas the modified TDCP is used for position estimation. When initialized with a high-accuracy reference position, the proposed navigation strategy can achieve submeter positioning accuracy in the nondifferential mode without estimating ambiguities. Compared with the conventional TDCP-only method, the inherent position drift problem of the TDCP observations can also be avoided. The absolute positioning accuracy of the proposed conventional+modified TDCP measurement update method is determined by the reference position, since the TDCP, including conventional and modified TDCP, is a relative measurement. However, even when initialized with a low-accuracy reference position, the relative positioning accuracy (or precision) of the proposed method is still very high, and the reference positioning accuracy can be maintained, owing to the proposed method. The proposed method can greatly improve the positioning accuracy, as compared with traditional pseudorange+Doppler GPS/IMU tightly coupled navigation systems.

53 citations

Proceedings ArticleDOI
08 May 1994
TL;DR: The author's system, called Compliant Linkage Autonomous Platform with Position Error Recovery (CLAPPER), requires neither external references ( such as navigation beacons, artificial landmarks, known floorplans, or satellite signals), nor inertial navigation aids (such as accelerometers or gyros).
Abstract: Presents a new approach to accurate and reliable dead-reckoning with mobile robots. The approach makes use of special properties of the author's multi-degree-of-freedom (MDOF) mobile platform, in which two differential-drive mobile robots (called "trucks") are physically connected through a compliant linkage. Using one linear and two rotary encoders, the system can measure the relative distance and bearing between the two trucks. During operation, both trucks perform conventional dead-reckoning with their wheel encoders, but, in addition, use information about their relative position to correct dead-reckoning errors. The author's system, called Compliant Linkage Autonomous Platform with Position Error Recovery (CLAPPER), requires neither external references (such as navigation beacons, artificial landmarks, known floorplans, or satellite signals), nor inertial navigation aids (such as accelerometers or gyros). Nonetheless, the experimental results included in this paper show one to two orders of magnitude better positioning accuracy than systems based on conventional dead-reckoning. >

52 citations

Journal ArticleDOI
23 Mar 2015-Sensors
TL;DR: This article compares three different algorithms used to compute Euler angles from data obtained by the angular rate sensor—the algorithms based on a rotational matrix, on transforming angular velocity to time derivations of the Euler angle, and on unit quaternion expressing rotation.
Abstract: This article compares three different algorithms used to compute Euler angles from data obtained by the angular rate sensor (e.g., MEMS gyroscope)—the algorithms based on a rotational matrix, on transforming angular velocity to time derivations of the Euler angles and on unit quaternion expressing rotation. Algorithms are compared by their computational efficiency and accuracy of Euler angles estimation. If attitude of the object is computed only from data obtained by the gyroscope, the quaternion-based algorithm seems to be most suitable (having similar accuracy as the matrix-based algorithm, but taking approx. 30% less clock cycles on the 8-bit microcomputer). Integration of the Euler angles’ time derivations has a singularity, therefore is not accurate at full range of object’s attitude. Since the error in every real gyroscope system tends to increase with time due to its offset and thermal drift, we also propose some measures based on compensation by additional sensors (a magnetic compass and accelerometer). Vector data of mentioned secondary sensors has to be transformed into the inertial frame of reference. While transformation of the vector by the matrix is slightly faster than doing the same by quaternion, the compensated sensor system utilizing a matrix-based algorithm can be approximately 10% faster than the system utilizing quaternions (depending on implementation and hardware).

52 citations

Journal ArticleDOI
Rui Dou1, Haibin Duan1
TL;DR: A novel control parameter design method is presented for the automatic carrier landing system (ACLS) for aircraft to obtain the better dynamic response of the longitude command and with the help of the optimization algorithm, ACLS can have better performance in dynamic responses.

52 citations


Network Information
Related Topics (5)
Control system
129K papers, 1.5M citations
82% related
Control theory
299.6K papers, 3.1M citations
81% related
Robustness (computer science)
94.7K papers, 1.6M citations
80% related
Wireless sensor network
142K papers, 2.4M citations
79% related
Object detection
46.1K papers, 1.3M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023309
2022657
2021491
2020889
20191,003
20181,013