scispace - formally typeset
Search or ask a question
Topic

Inertial navigation system

About: Inertial navigation system is a research topic. Over the lifetime, 14582 publications have been published within this topic receiving 190618 citations. The topic is also known as: intertial guidance system & inertial reference platform.


Papers
More filters
Journal ArticleDOI
TL;DR: New strategies to cope with the integration of an inertial navigation system, a global navigation satellite system, and light detection and ranging (LIDAR) to achieve simultaneous localization and mapping (INS/GNSS/LiDAR SLAM) especially in GNSS challenging environments where GNSS signals are blocked or contaminated with reflected signals is proposed.
Abstract: In the near future, multi-sensor fusion will be the core component to navigate the autonomous driving platforms. This paper proposes new strategies to cope with the integration of an inertial navigation system (INS), a global navigation satellite system (GNSS), and light detection and ranging (LIDAR) to achieve simultaneous localization and mapping (INS/GNSS/LiDAR SLAM) especially in GNSS challenging environments where GNSS signals are blocked or contaminated with reflected signals. The proposed strategies implement a high level of integration with various information received from multiple sensors to collectively compensate for the specific drawbacks of those sensors included in the integrated system. The first strategy is to solve the divergence and drift problems of SLAM using the initial pose information from INS and the proposed refreshing process using an INS/GNSS integrated system. In addition, an updated mechanization is designed to qualify those received measurements based on cross validation of separate types of data. This mechanization is to ensure all measurements are reliable for the Extended Kalman Filter (EKF) update process. Moreover, the SLAM-derived information plays a major role to recognize the vehicle movement which assists the system to accurately apply those appropriate vehicle motion constraint models. The preliminary results presented in this study illustrate that proposed algorithm performs superior than the traditional INS/GNSS integration scheme and provides absolute navigation accuracy of 2 meters and 0.6% of distance traveled in GNSS-denied as well as 1.2 meters in GNSS-hostile environments, respectively.

48 citations

Journal ArticleDOI
TL;DR: An improved gravity matching algorithm, based on the principle of the terrain contour matching (TERCOM) algorithm, has better real-time performance, positioning accuracy, and reduced calculation burden.
Abstract: Gravity-aided inertial navigation is a leading issue in the application of autonomous underwater vehicle. An improved gravity matching algorithm, based on the principle of the terrain contour matching (TERCOM) algorithm, is proposed. The matching algorithm applies the shortest path algorithm to increase update frequency. In addition, the positioning error can be limited due to the novel correlation analysis method. Compared with existing algorithms, the improved TERCOM algorithm has better real-time performance, positioning accuracy, and reduced calculation burden. The reliability and the accuracy of the algorithm are verified via simulation tests.

48 citations

Journal ArticleDOI
21 Jan 2019-Sensors
TL;DR: A PDR system based on a chest-mounted IMU as a novel installation position for body-suit-type systems using a novel regression model for estimating step lengths only with accelerations to correctly compute step displacement by using the IMU data acquired at the chest.
Abstract: Demand for indoor navigation systems has been rapidly increasing with regard to location-based services. As a cost-effective choice, inertial measurement unit (IMU)-based pedestrian dead reckoning (PDR) systems have been developed for years because they do not require external devices to be installed in the environment. In this paper, we propose a PDR system based on a chest-mounted IMU as a novel installation position for body-suit-type systems. Since the IMU is mounted on a part of the upper body, the framework of the zero-velocity update cannot be applied because there are no periodical moments of zero velocity. Therefore, we propose a novel regression model for estimating step lengths only with accelerations to correctly compute step displacement by using the IMU data acquired at the chest. In addition, we integrated the idea of an efficient map-matching algorithm based on particle filtering into our system to improve positioning and heading accuracy. Since our system was designed for 3D navigation, which can estimate position in a multifloor building, we used a barometer to update pedestrian altitude, and the components of our map are designed to explicitly represent building-floor information. With our complete PDR system, we were awarded second place in 10 teams for the IPIN 2018 Competition Track 2, achieving a mean error of 5.2 m after the 800 m walking event.

48 citations

Proceedings Article
12 Apr 2011
TL;DR: A simulation environment, specifically for inertial sensing applications, is presented, which simulates sensor readings based on continuous trajectory models, and shows how suitable models can be generated from existing motion capture or other sampled data.
Abstract: The use of wireless devices with accelerometers and gyroscopes to measure the movements of humans and objects is a growing area of interest. Applications range from simple activity detection to detailed full-body motion capture using networks of sensors worn on the body. A variety of algorithms have been proposed for these applications, but opportunities for accurate evaluation and comparison have been limited due to the many difficulties with performing rigorous experiments. We present a simulation environment, specifically for inertial sensing applications, designed to tackle this problem. We simulate sensor readings based on continuous trajectory models, and show how suitable models can be generated from existing motion capture or other sampled data. We show a good match between our simulated data and real sensor data for human movements. We also model a wide range of real-world issues such as non-ideal sensors, magnetic field distortions, timing factors and radio packet losses. To demonstrate the capabilities of our simulator, we present new results comparing four existing orientation estimation algorithms for human motion capture.

47 citations

Patent
27 Aug 1993
TL;DR: In this paper, a weak Hamiltonian finite element method is used for iterative computation of missile guidance acceleration commands for maximizing a missile's terminal velocity while satisfying control authority limits and terminal attitude constraints.
Abstract: A weak Hamiltonian finite element method is used for iterative computation of missile guidance acceleration commands for maximizing a missile's terminal velocity while satisfying control authority limits and terminal attitude constraints. The guidance acceleration commands include commands for controlling the angle of attack (α) and the bank angle (φ) of the missile. The angle of attack (α) and bank angle (φ) are related to a set of virtual control variables selected to avoid convergence problems when the angle of attack is approximately zero. The preferred control variables are β 2 and β 3 such that β 2 =cosφtanα and β 3 =sinφtanα. Iterative convergence is facilitated when control inequality constraint parameters are reached by adjusting iterative solutions between iterations toward satisfaction of the constraints. An approximation to an optimal trajectory is calculated at each guidance cycle during missile flight using data which are revised during each guidance cycle. The revised data include current position data for the target and the current position for the missile. The revised data are taken from the most reliable source currently available, such as on-board target-seeking radar when the target-seeking radar is locked onto the target, uplink data from ground or airborne tracking radar when an uplink is operational, or inertial guidance data. Extracted from the optimal trajectory is an optimal acceleration command for optimally controlling the angle of attack and bank angle of the missile.

47 citations


Network Information
Related Topics (5)
Control system
129K papers, 1.5M citations
82% related
Control theory
299.6K papers, 3.1M citations
81% related
Robustness (computer science)
94.7K papers, 1.6M citations
80% related
Wireless sensor network
142K papers, 2.4M citations
79% related
Object detection
46.1K papers, 1.3M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023309
2022657
2021491
2020889
20191,003
20181,013