scispace - formally typeset
Search or ask a question
Topic

Inertial navigation system

About: Inertial navigation system is a research topic. Over the lifetime, 14582 publications have been published within this topic receiving 190618 citations. The topic is also known as: intertial guidance system & inertial reference platform.


Papers
More filters
Journal ArticleDOI
TL;DR: Cooperative positioning, where first responders exchange position and error estimates in conjunction with performing radio based ranging, is deemed a key technology.
Abstract: A robust, accurate positioning system with seamless outdoor and indoor coverage is a highly needed tool for increasing safety in emergency response and military urban operations. It must be lightweight, small, inexpensive, and power efficient, and still provide meter-level accuracy during extended operations. GPS receivers, inertial sensors, and local radio-based ranging are natural choices for a multisensor positioning system. Inertial navigation with foot-mounted sensors is suitable as the core system in GPS denied environments, since it can yield meter-level accuracies for a few minutes. However, there is still a need for additional supporting sensors to keep the accuracy at acceptable levels during the duration of typical soldier and first responder operations. Suitable aiding sensors are three-axis magnetometers, barometers, imaging sensors, Doppler radars, and ultrasonic sensors. Further more, cooperative positioning, where first responders exchange position and error estimates in conjunction with performing radio based ranging, is deemed a key technology. This article provides a survey on technologies and concepts for high accuracy soldier and first responder positioning systems, with an emphasis on indoor positioning.

209 citations

Journal ArticleDOI
TL;DR: This study suggests the use of Input-Delayed Neural Networks (IDNN) to model both the INS position and velocity errors based on current and some past samples of INS location and velocity, respectively, which results in a more reliable positioning solution during long GPS outages.

208 citations

Journal ArticleDOI
TL;DR: In this paper, a control theoretic approach to the analysis of in-flight alignment (IFA) of inertial navigation systems (INS) whose estimability is known to be enhanced by maneuvers is presented.
Abstract: For pt.I see ibid., vol.28, no.4, p.1056-67, Oct. 1992. The method of analyzing the observability of time-varying linear systems as piecewise constant systems (PWCS) is applied to the analysis of in-flight alignment (IFA) of inertial navigation systems (INS) whose estimability is known to be enhanced by maneuvers. The validity of this approach to the analysis of IFA is proven. The analysis lays the theoretical background to, and clearly demonstrates the observability enhancement of, IFA. The analytic conclusions are confirmed by covariance simulations. Although INS IFA was handled to various degrees in the past, a comprehensive control theoretic approach to the problem is introduced. The analysis yields practical conclusions and a procedure previously unknown. >

208 citations

29 Sep 2006
TL;DR: This paper evaluates the performance of a shoe/foot mounted inertial system for pedestrian navigation application using a medium cost tactical grade Honeywell HG1700 inertial measurement unit (IMU) and a low-cost MEMS-based Crista IMU.
Abstract: This paper evaluates the performance of a shoe/foot mounted inertial system for pedestrian navigation application. Two different grades of inertial sensors are used, namely a medium cost tactical grade Honeywell HG1700 inertial measurement unit (IMU) and a low-cost MEMS-based Crista IMU (Cloud Cap Technology). The inertial sensors are used in two different ways for computing the navigation solution. The first method is a conventional integration algorithm where IMU measurements are processed through a set of mechanization equation to compute a six degree-offreedom (DOF) navigation solution. Such a system is referred to as an Inertial Navigation System (INS). The integration of this system with GPS is performed using a tightly coupled integration scheme. Since the sensor is placed on the foot, the designed integrated system exploits the small period for which foot comes to rest at each step (stance-phase of the gait cycle) and uses Zero Velocity Update (ZUPT) to keep the INS errors bounded in the absence of GPS. An algorithm for detecting the stance-phase using the pattern of three-dimensional acceleration is discussed. In the second method, the navigation solutions is computed using the fact that a pedestrian takes one step at a time, and thus positions can be computed by propagating the step-length in the direction of pedestrian motion. This algorithm is termed as pedestrian dead-reckoning (PDR) algorithm. The IMU measurement in this algorithm is used to detect the step, estimate the step-length, and determine the heading for solution propagation. Different algorithms for stridelength estimation and step-detection are discussed in this paper. The PDR system is also integrated with GPS through a tightly coupled integration scheme. The performance of both the systems is evaluated through field tests conducted in challenging GPS environments using both inertial sensors. The specific focus is on the system performance under long GPS outages of duration upto 30 minutes.

206 citations

Journal ArticleDOI
TL;DR: Uncertainties in attitude, gyro bias, and GPS antenna lever arm were shown to determine unobservable errors in the position, velocity, and accelerometer bias, proving that all the errors can be made observable by maneuvering.
Abstract: Observability properties of errors in an integrated navigation system are studied with a control-theoretic approach in this paper. A navigation system with a low-grade inertial measurement unit and an accurate single-antenna Global Positioning System (GPS) measurement system is considered for observability analysis. Uncertainties in attitude, gyro bias, and GPS antenna lever arm were shown to determine unobservable errors in the position, velocity, and accelerometer bias. It was proved that all the errors can be made observable by maneuvering. Acceleration changes improve the estimates of attitude and gyro bias. Changes in angular velocity enhance the lever arm estimate. However, both the motions of translation and constant angular velocity have no influence on the estimation of the lever arm. A covariance simulation with an extended Kalman filter was performed to confirm the observability analysis.

205 citations


Network Information
Related Topics (5)
Control system
129K papers, 1.5M citations
82% related
Control theory
299.6K papers, 3.1M citations
81% related
Robustness (computer science)
94.7K papers, 1.6M citations
80% related
Wireless sensor network
142K papers, 2.4M citations
79% related
Object detection
46.1K papers, 1.3M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023309
2022657
2021491
2020889
20191,003
20181,013