scispace - formally typeset
Search or ask a question
Topic

Inertial navigation system

About: Inertial navigation system is a research topic. Over the lifetime, 14582 publications have been published within this topic receiving 190618 citations. The topic is also known as: intertial guidance system & inertial reference platform.


Papers
More filters
Proceedings Article
09 Jul 2012
TL;DR: This work derives an easy-to-use calibration algorithm that can be used to calibrate a combination of a magnetometer and inertial sensors and makes use of probabilistic models to obtain the calibration algorithm as the solution to a maximum likelihood problem.
Abstract: Measurements from magnetometers and inertial sensors (accelerometers and gyroscopes) can be combined to give 3D orientation estimates. In order to obtain accurate orientation estimates it is imperative that the magnetometer and inertial sensor axes are aligned and that the magnetometer is properly calibrated for both sensor errors as well as presence of magnetic distortions. In this work we derive an easy-to-use calibration algorithm that can be used to calibrate a combination of a magnetometer and inertial sensors. The algorithm compensates for any static magnetic distortions created by the sensor platform, magnetometer sensor errors and determines the alignment between the magnetometer and the inertial sensor axes. The resulting calibration procedure does not require any additional hardware. We make use of probabilistic models and obtain the calibration algorithm as the solution to a maximum likelihood problem. The efficacy of the proposed algorithm is illustrated using experimental data collected from a sensor unit placed in a magnetically disturbed environment onboard a jet aircraft.

90 citations

Patent
Wayne A. Soehren1
22 Sep 2006
TL;DR: In this paper, a personal navigation system including one or more sensors that sense motion of a human and output signals corresponding to the motion of the human and a human-motion-classification processing block is described.
Abstract: A personal navigation system including one or more sensors that sense motion of a human and output signals corresponding to the motion of the human and a human-motion-classification processing block that receives sensor data from the one or more sensors. The human-motion-classification processing block includes a Kalman filter processing block, an inertial navigation processing block, and a motion classification processing block. The Kalman filter processing block executes a Kalman filter that provides corrections to the motion classification processing block. The inertial navigation processing block receives input sensor data from the sensors and outputs a navigation solution. The motion classification processing block executes a motion classification algorithm that implements a step-time threshold between two types of motion, identifies a type of motion based on the received sensor data, and outputs a distance-traveled estimate to the Kalman filter processing block based on the identified type of motion.

90 citations

Proceedings ArticleDOI
09 May 2011
TL;DR: A team of three indoor mobile robots equipped with lasers, odometry and inertial sensing provides experimental verification of the algorithms effectiveness in combining location information.
Abstract: This paper presents a distributed algorithm for performing joint localisation of a team of robots. The mobile robots have heterogeneous sensing capabilities, with some having high quality inertial and exteroceptive sensing, while others have only low quality sensing or none at all. By sharing information, a combined estimate of all robot poses is obtained. Inter-robot range-bearing measurements provide the mechanism for transferring pose information from well-localised vehicles to those less capable. In our proposed formulation, high frequency egocentric data (e.g., odometry, IMU, GPS) is fused locally on each platform. This is the distributed part of the algorithm. Inter-robot measurements, and accompanying state estimates, are communicated to a central server, which generates an optimal minimum mean-squared estimate of all robot poses. This server is easily duplicated for full redundant decentralisation. Communication and computation are efficient due to the sparseness properties of the information-form Gaussian representation. A team of three indoor mobile robots equipped with lasers, odometry and inertial sensing provides experimental verification of the algorithms effectiveness in combining location information.

90 citations

Journal ArticleDOI
01 Jan 2017
TL;DR: It is shown that the gyroscope bias, not accounted for in [1], significantly affects the performance of the closed-form solution and a new method is introduced to automatically estimate this bias and is robust to it.
Abstract: State of the art approaches for visual-inertial sensor fusion use filter-based or optimization-based algorithms. Due to the nonlinearity of the system, a poor initialization can have a dramatic impact on the performance of these estimation methods. Recently, a closed-form solution providing such an initialization was derived in [1] . That solution determines the velocity (angular and linear) of a monocular camera in metric units by only using inertial measurements and image features acquired in a short time interval. In this letter, we study the impact of noisy sensors on the performance of this closed-form solution. We show that the gyroscope bias, not accounted for in [1] , significantly affects the performance of the method. Therefore, we introduce a new method to automatically estimate this bias. Compared to the original method, the new approach now models the gyroscope bias and is robust to it. The performance of the proposed approach is successfully demonstrated on real data from a quadrotor MAV.

90 citations

Journal ArticleDOI
TL;DR: In this paper, the technology fields that will have a significant impact on the deployment of a centimeter-level vehicle-positioning system will be discussed and the complementary effectiveness is illustrated.
Abstract: Vehicle positioning with an accuracy of 10 cm or less will enable lane-keeping assistance in addition to other safety benefits when an enhanced lane-level digital map is in place. With constantly evolving technology and sensors, a high-precision positioning system that fits into the automotive market can be expected within the next decade. Such a system will incorporate Global Positioning System (GPS) and inertial system (INS) for enhanced positioning performance and availability. In this paper, the technology fields that will have a significant impact on the deployment of a centimeter-level vehicle-positioning system will be discussed. Vision-based lane-recognition (VBLR) systems are relatively mature and have already been introduced to the market for lane-departure warning, etc. However, both systems have some limitations. GPS/INS-based systems may suffer from frequent satellite signal masking or blockage, while vision-based systems do not work well in adverse weather conditions or with poor lane signature. Effectively combining these two technologies can make a robust lane-departure warning system. A precision map was made for the test area near Stuttgart using DaimlerChrysler Research and Technology North America (RTNA)'s map-making approach. A Mercedes S-class equipped with both a vision system and a high-precision GPS/INS was used for the test. The positioning map-matching results and the vision offset are compared and the complementary effectiveness is illustrated.

89 citations


Network Information
Related Topics (5)
Control system
129K papers, 1.5M citations
82% related
Control theory
299.6K papers, 3.1M citations
81% related
Robustness (computer science)
94.7K papers, 1.6M citations
80% related
Wireless sensor network
142K papers, 2.4M citations
79% related
Object detection
46.1K papers, 1.3M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023309
2022657
2021491
2020889
20191,003
20181,013